Article
  • Addition Polymerization of 5-Norbornene-2-carboxylic Acid Esters Using Palladium Catalyst System: Synthesis of Monomers, Effect of Their Stereochemistry on Polymerization Behavior
  • Chung HK, Shim HS, Jeon SH, Kim JH, Nam SW, Jeon BS, Kim YJ
  • Palladium 촉매를 이용한 5-Norbornene-2-carboxylic Acid Esters의 부가 중합:단량체의 합성, 단량체의 Stereochemistry(Endo-, Exo-이성질체)가 고분자의 중합 거동에 미치는 영향
  • 정해강, 심형섭, 전승호, 김지흥, 남성우, 전붕수, 김영준
Abstract
The effects of chemical structure of alkyl groups of norbornene carboxylic alkyl esters(methyl, octyl, 4-chlorobenzyl) and endo/exo ratios of norbornene monomers on activity of palladium catalyst and polymerization behavior were investigated. Norbornene ester monomers were synthesized from the reaction of 5-norborene-2-carboxylic acid and various alcohols. Polymerization catalyst, di-μ-chloro-bis(-methoxybicyclo[2,2,1]-hept-2-ene)palladium(II) (DCBMP), was synthesized according to the literature procedure and silver hexafluoroantimonate (AgSbF6) was used as a conjugate anion source. Gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) were the principal techniques for polymer characterization and 1H NMR spectroscopy was used for chemical structures determination of monomers and polymers. For all of the norbonene alkyl esters GPC data showed that when the amounts of endo isomers exceeded those of exo isomers decreased molecular weight polymers were obtained probably due to the decreased catalyst activity. Polymerizations were conducted by varying the monomer/catalyst mole ratios (100:1, 200:1, 300:1). When 300:1 monomer/catalyst ratio was employed it was possible to synthesize high molecular weight (Mn=27500 g/mol), film forming polymer from exo-norbornene carboxylic acid octyl ester.

Palladium(II) 촉매를 이용한 norobornene carboxylic acid estsers의 중합 시 단량체의 알킬 작용기의 종류, endo/exo 비율이 촉매의 활성도 및 중합 특성에 미치는 영향을 조사하였다. Norbornene esters 단량체는 5-norborene-2-carboxylic acid와 다양한 알코올을 반응시켜 합성하였다. 중합 촉매로는 di-μ-chloro-bis(-methoxybicyclo[2,2,1]-hept-2-ene)palladium(II)(DCBMP)를 합성하여 사용하였고, 짝음이온으로 실버 헥사플루오로안티모네이트(AgSbF6)를 이용하였다. 고분자의 분석을 위해 젤 투과 크로마토그래피(gel permeation chromatography, GPC), 열 중량 분석법(thermogravimetric analysis, TGA), 시차주사 열량측정법(differential scanning calorimetry, DSC), 화학구조 분석을 위해 1H NMR spectroscopy를 이용하였다. 분자량 분석 결과 모든 작용기의 경우 endo-이성체의 비율이 exo-이성체의 비율보다 높을 경우 촉매의 구조적 방해로 인하여 반응성이 감소됨을 보였다. 또한 단량체와 촉매의 비율이 중합 거동에 미치는 영향을 조사하기 위해 단량체와 촉매의 몰비율을 100:1, 200:1, 300:1로 변화시켜 실험을 진행하였으며, 이 때 exo-norbornene carboxylic acid octyl ester의 경우 300:1 촉매비에서 필름형성이 가능한 높은 분자량(Mn=27500 g/mol)의 고분자를 합성할 수 있었다.

Keywords: poly(norbornene carboxylic acid ester); palladium(II) catalyst; endo/exo; vinyl-addition polymerization

References
  • 1. Kennedy JP, Makiwski HS, J. Marcromol. Sci. Chem. A, 1, 345 (1967)
  •  
  • 2. Gaylord NG, Deshpande AB, Mandal BM, Martan M, J. Marcromol. Sci. Chem. A, 11, 1053 (1977)
  •  
  • 3. Schrock RR, Feldman J, Cannizzo LF, Grubbs RH, Macromolecules, 20, 1172 (1987)
  •  
  • 4. Heroguez V, Fontanille M, J. Polym. Sci. A: Polym. Chem., 32(9), 1755 (1994)
  •  
  • 5. Schwab P, Grubbs RH, Ziller JW, J. Am., 108, 100 (1996)
  •  
  • 6. Burmaghim JL, Girolami GS, Organometallics, 18, 1923 (1999)
  •  
  • 7. Goodall BL, McIntosh III LG, Rhodes LF, Makromol. Chem. Macromol. Symp., 89, 421 (1995)
  •  
  • 8. Hennis A, Polly J, Long G, Sen S, Organometallics, 20, 2802 (2001)
  •  
  • 9. Lipian J, Mimna RA, Fondran JC, Yandulov D, Shick RA, Goodall BL, Rhodes LF, Huffman JC, Macromolecules, 35(24), 8969 (2002)
  •  
  • 10. Ahn JC, Park SH, Lee KH, Park KH, Polym.(Korea), 27(5), 429 (2003)
  •  
  • 11. Haselwandel TFA, Heitz W, Kriigel SA, Wendorff JH, Macromol. Chem. Phys., 197, 3435 (1996)
  •  
  • 12. Janiak C, Lassahn PG, J. Mol. Catal. A-Chem., 166(2), 193 (2001)
  •  
  • 13. Mulpuri SV, Shin J, Shin BG, Greiner A, Yoon DY, Polymer, 52(19), 4377 (2011)
  •  
  • 14. Ahn JC, Park KH, Polym.(Korea), 28, 245 (2011)
  •  
  • 15. Liu BY, Li Y, Shin BG, Yoon DY, Kim I, Zhang L, Yan WD, J. Polym. Sci. A: Polym. Chem., 45(15), 3391 (2007)
  •  
  • 16. Muller K, Jung Y, Yoon DY, Agarwal S, Greiner A, Macromol. Chem. Phys., 211, 1595 (2010)
  •  
  • 17. Heinz BS, Alt FP, Heitz W, Macromol. Rapid Commun., 19(5), 251 (1998)
  •  
  • 18. Kim KH, Han YK, Lee SU, Chun SH, Ok JH, J. Mol. Model., 9, 304 (2003)
  •  
  • 19. Mathew JP, Reinmuth A, Melia J, Swords N, Risse W, Macromolecules, 29(8), 2755 (1996)
  •  
  • 20. Funk JK, Andes CE, Sen A, Organometallics, 23, 1680 (2004)
  •  
  • 21. Cho I, Pyun KS, Yingyong Huaxue, 18, 296 (2001)
  •  
  • 22. Bergstrom CH, Ruotoistenmaki J, Aitola ET, Seppala JV, J. Appl. Polym. Sci., 77(5), 1108 (2000)
  •  
  • 23. Seehof N, Mehler C, Breunig S, Risse W, J. Mol. Catal., 76, 219 (1992)
  •  
  • 24. Heinz BS, Heitz W, Krugel SA, Raubacher F, Wendorff JH, Acta Polym., 48, 385 (1997)
  •  
  • 25. Heinz BS, Alt FP, Heitz W, Macromol. Rapid Commun., 19(5), 251 (1998)
  •  
  • 26. Green M, Hancock RI, J. Chem. Soc. A, 2054 (1967)
  •  
  • 27. Cotton FA, Inorg Syn, 13, 52 (1966)
  •  
  • 28. Kanao M, Otake A, Tsuchiya K, Ogino K, Int. J. Org. Chem., 2, 26 (2012)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(3): 487-492

    Published online May 25, 2015

  • 10.7317/pk.2015.39.3.487
  • Received on Oct 16, 2014
  • Accepted on Nov 24, 2014