Article
  • Thermal Conductivity of Thermally Conductive Ceramic Composites and Silicon Carbide/Epoxy Composites through Wetting Process
  • Hwang Y, Kim J, Cho W
  • 세라믹 방열 복합체의 열전도도 분석 및 Wetting Process를 이용한 SiC/에폭시 복합체
  • 황용선, 김주헌, 조원철
Abstract
Various kinds of thermal conductive ceramic/polymer composites (aluminum nitride, aluminum oxide, boron nitride, and silicon carbide/epoxy) were prepared by a casting method and their optical images were observed by FESEM. Among these, SiC/epoxy composite shows inhomogeneous dispersion features of SiC and air voids in the epoxy matrix layer, resulting in undesirable thermal conductive properties. To enhance the thermal conductivities of SiC/epoxy composites, the epoxy wetting method which can directly infiltrate the epoxy droplet onto filtrated SiC cake was employed to fabricate the homogeneously dispersed SiC/epoxy composite for ideal thermal conductive behavior, with maximum thermal conductivity of 3.85W/mK at 70 wt% of SiC filler contents.

세라믹 방열 복합체의 특성 비교를 위해 casting method로 제작하였으며, 이들의 광학적 이미지와 단면 FESEM 분석을 실시하였다. 각각의 복합체의 열전도성 특성을 비교 분석하였으며, silicon carbide(SiC)의 분산도 문제를 해결하기 위해 wetting process를 도입하여 SiC/epoxy 복합체를 제작하였다. 기존의 방법에서 발견된 복합체 내공극과 분산도 문제가 wetting process를 통해 향상되었으며, 충전제 함량에 따른 열전도성 특성을 분석하였다. SiC 복합체의 함량에 따른 공극률 해석을 통해 70 wt% SiC 복합체에서 가장 높은 열전도도 값을 보였으며, 이들의 단면 FE-SEM 분석을 통해 복합체 내의 충전제 분산도를 확인하였다.

Keywords: ceramic particles; thermally conductive composites; wetting process; silicon carbide.

References
  • 1. Lin W, Moon KS, Wong CP, Adv. Mater., 21(23), 2421 (2009)
  •  
  • 2. Mamunya Y, Boudenne A, Lebovka N, Ibos L, Candau Y, Lisunova M, Compos. Sci. Technol., 68, 1981 (2008)
  •  
  • 3. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC, J. Phys. Chem. C, 111, 7565 (2007)
  •  
  • 4. Garimella SV, Fleischer AS, Murthy JY, Keshavarzi A, Prasher R, Patel C, IEEE Trans. Compon. Packag. Technol., 31, 801 (2008)
  •  
  • 5. Prasher R, Proc. IEEE, 94, 1571 (2006)
  •  
  • 6. Sarvar F, Whalley DC, Hutt DA, Palmer PJ, Teh NJ, Microelectron. Int., 24, 66 (2007)
  •  
  • 7. Shi Z, Radwan M, Kirihara S, Miyamoto Y, Jin Z, Appl. Phys. Lett., 95, 224104 (2009)
  •  
  • 8. Li TL, Hsu SLC, J. Phys. Chem. B, 114(20), 6825 (2010)
  •  
  • 9. Zhi CY, Bando Y, Terao T, Tang CC, Kuwahara H, Golberg D, Adv. Funct. Mater., 19(12), 1857 (2009)
  •  
  • 10. Yang F, Zhao X, Xiao P, J. Eur. Ceram. Soc., 30, 3111 (2010)
  •  
  • 11. Zhou WY, Qi SH, An QL, Zhao HZ, Liu NL, Mater. Res. Bull., 42(10), 1863 (2007)
  •  
  • 12. Terao T, Zhi C, Bando Y, Mitome M, Tang C, Golberg D, J. Phys. Chem. C, 114, 4340 (2010)
  •  
  • 13. Zhou TL, Wang X, Mingyuan GU, Liu XH, Polymer, 49(21), 4666 (2008)
  •  
  • 14. Vyazovkin S, Sbirrazzuoli N, Macromol. Chem. Phys., 201, 199 (2000)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2014; 38(6): 782-786

    Published online Nov 25, 2014

  • Received on Apr 24, 2014
  • Accepted on May 19, 2014