Article
  • Morphology Evolution of Poly(L-lactic acid) (PLLA), Poly(ε-caprolactone) (PCL) and Polyethylene Oxide (PEO) Ternary Blend and Their Effects on Mechanical Properties for Bio Scaffold Applications
  • Ezzati P, Ghasemi I, Karrabi M, Azizi H, Fortelny I
  • 폴리락틱산, 폴리카프로락톤, 폴리에틸렌 옥사이드 삼성분계 블렌드의 형태학적 변화와 이들이 의료용 스캐폴더의 기계적 특성에 미치는 영향
Abstract
Ternary blends of poly(L-lactic acid) (PLLA), poly(ε-caprolactone) (PCL) and polyethylene oxide (PEO) were produced with different concentrations of components via melt blending. By leaching the PEO from the samples by water, porous materials were obtained with potential application for bio scaffolds. Sample porosity was evaluated by calculating the ratio of porous scaffold density (ρ*) to the non-porous material density (ρs). Highest porosity (51.42%) was related to the samples containing 50 wt%. of PEO. Scanning electron microscopy (SEM) studies showed the best porosity resulted by decreasing PLLA/PCL ratio at constant concentration of PEO. Crystallization behavior of the ternary blend samples was studied using differential scanning calorimetry (DSC). Results revealed that the crystallinity of PLLA was improved by addition of PEO and PCL to the samples. The porosity plays a key role in governing the compression properties. Mechanical properties are presented by Gibson-Ashby model.

Keywords: PLLA/PCL/PEO ternary blend; bio scaffold; melt blending; morphology; porosity.

References
  • 1. Fortelny I, Juza J, Dimzoski B, Eur. Polym. J., 48, 1230 (2012)
  •  
  • 2. Ezzati P, Ghasemi I, Karrabi M, Azizi H, Iran Polym. J., 17, 265 (2008)
  •  
  • 3. Shokoohi SH, Arefazar A, Polym. Adv. Technol., 20, 433 (2009)
  •  
  • 4. Sarazin P, Li G, Orts WJ, Favis BD, Polymer, 49(2), 599 (2008)
  •  
  • 5. Fortelny I, Lapcikova M, Mikesova J, Juza J, J. Polym. Sci. B: Polym. Phys., 47(21), 2158 (2009)
  •  
  • 6. Virgilio N, Desjardins P, L'Esperance G, Favis BD, Polymer, 51(6), 1472 (2010)
  •  
  • 7. Aamer KHA, Sardinha H, Bhatia SR, Biomaterials, 25, 1087 (2004)
  •  
  • 8. Luzinov I, Pagnoulle C, Jerome R, Polymer, 41(9), 3381 (2000)
  •  
  • 9. Torza S, Mason SG, J. Colloid Interface Sci., 33, 67 (1970)
  •  
  • 10. Virgilio N, Sarazin P, Favis BD, Biomaterials, 31, 5719 (2010)
  •  
  • 11. Le Corroller P, Favis BD, Polymer, 52(17), 3827 (2011)
  •  
  • 12. Ravati S, Favis BD, Polymer, 52(3), 718 (2011)
  •  
  • 13. Hobbs SY, Dekkers MEJ, Watkins VH, Polymer, 29, 1598 (1988)
  •  
  • 14. Ravati S, Favis BD, Polymer, 51(20), 4547 (2010)
  •  
  • 15. Reignier J, Favis BD, Macromolecules, 33(19), 6998 (2000)
  •  
  • 16. Zhang JH, Ravati S, Virgilio N, Favis BD, Macromolecules, 40(25), 8817 (2007)
  •  
  • 17. Omonov TS, Harrats C, Groeninckx G, Polymer, 46(26), 12322 (2005)
  •  
  • 18. Guo HF, Gvozdic NV, Meier DJ, Polymer, 38(19), 4915 (1997)
  •  
  • 19. Guo HF, Packirisamy S, Gvozdic NV, Meier DJ, Polymer, 38(4), 785 (1997)
  •  
  • 20. Koseki Y, Lee MS, Macosko CW, Rubber Chem. Technol., 72, 109 (1998)
  •  
  • 21. Reignier J, Favis BD, Heuzey MC, Polymer, 44(1), 49 (2003)
  •  
  • 22. Maglio G, Malinconico M, Migliozzi A, Groeninckx G, Macromol. Chem. Phys., 205, 946 (2004)
  •  
  • 23. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS, Int. J. Polym. Sci., 1, 1 (2011)
  •  
  • 24. Ahn WY, Kim HL, Song JE, Lee D, Khang G, Polym.(Korea), 35(6), 499 (2011)
  •  
  • 25. Oh YA, Kim SH, Lee SJ, Yoo JJ, van Dyke M, Rhee JM, Khang G, Polym.(Korea), 32(5), 403 (2008)
  •  
  • 26. Kodama Y, Machado LDB, Giovedi C, Nakayama K, Nucle. Instrum. Method. Phys. Res. B, 265, 294 (2007)
  •  
  • 27. Dell'Erba R, Groeninckx G, Maglio G, Malinconico M, Migliozzi A, Polymer, 42(18), 7831 (2001)
  •  
  • 28. Todo M, Park JE, Kuraoka H, Kim JW, Taki K, Ohshima M, J. Mater. Sci., 44(15), 4191 (2009)
  •  
  • 29. Todo M, Park SD, Takayama T, Arakawa K, Eng. Fract. Mech., 74, 1872 (2007)
  •  
  • 30. Zhang W, Yao D, Zhang Q, Zhou J, Lelkes P, Biofabrication, 2, 1 (2010)
  •  
  • 31. Tanaka T, Eguchi S, Saitoh H, Taniguchi M, Lloyd DR, Desalination, 234(1-3), 175 (2008)
  •  
  • 32. Salgado AJ, Coutinho OP, Reis RL, Macromol. Biosci., 4, 743 (2004)
  •  
  • 33. Khasim HRI, Henning S, Michler GH, Brand J, Macromol. Symp., 294, 144 (2010)
  •  
  • 34. Mikos AG, Temenoff JS, Electron. J. Biotechnol., 3, 1 (2000)
  •  
  • 35. Reignier J, Huneault MA, Polymer, 47(13), 4703 (2006)
  •  
  • 36. Sarazin P, Roy X, Favis BD, Biomaterials, 25, 5965 (2004)
  •  
  • 37. Hoa MH, Kuoa PY, Hsieha HJ, Hsienb TY, Houc LT, Laid JY, Wang DM, Biomaterials, 25, 129 (2004)
  •  
  • 38. Tsuji H, Horikawa G, Itsuno S, J. Appl. Polym. Sci., 104(2), 831 (2007)
  •  
  • 39. Pinoit D, Prudhomme RE, Polymer, 43, 2121 (2003)
  •  
  • 40. Gomari S, Ghasemi I, Karrabi M, Azizi H, J. Polym. Res., 19, 1 (2012)
  •  
  • 41. Lewin M, Marom AM, Frank R, Polym. Adv. Technol., 16, 429 (2005)
  •  
  • 42. Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ, Polymer, 37(26), 5849 (1996)
  •  
  • 43. Kuo SW, Huang CF, Tung YC, Chang FC, J. Appl. Polym. Sci., 100(2), 1146 (2006)
  •  
  • 44. Jurkin T, Pucic I, Radiat. Phys. Chem., 81, 1303 (2012)
  •  
  • 45. Ojijo V, Malwela T, Ray SS, Sadiku R, Polymer, 53(2), 505 (2012)
  •  
  • 46. Wang M, Am. J. Biochem. Biotechnol., 2, 80 (2006)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2014; 38(4): 449-456

    Published online Jul 25, 2014

  • Received on Dec 14, 2013
  • Accepted on Mar 10, 2014