Article
  • Electrical Resistivity and Mechanical Properties of Polypropylene Composites Containing Carbon Nanotubes and Stainless Steel Short Fibers
  • Jung JK, Park K, Bang D, Oh M, Kim B, Lee JK
  • 탄소나노튜브와 스테인레스강 단섬유를 함유한 폴리프로필렌 복합체의 전기저항 및 기계적 특성
  • 정종기, 박기훈, 방대석, 오명훈, 김봉석, 이종근
Abstract
Polypropylene (PP) composites containing conductive multi-walled carbon nanotube (MWNT) and stainless steel short fiber (SSF) were manufactured using a twin screw extruder and characterized their surface resistivity and mechanical properties in this work. Surface resistivity measurements showed that the percolation threshold appeared at a lower MWNT loading when a small amount of SSF was added to PP/MWNT composites. Tensile modulus and strength of the composites increased but elongation-at-break decreased greatly compared to pure PP. Also, the effects of MWNT and SSF on storage modulus and tan δ from dynamic mechanical analysis for the composites were examined, and the morphologies of fractured surface and the fillers were observed using a scanning electron microscope.

본 연구에서는 이축 스크류식 압출기를 이용하여 폴리프로필렌(PP)에 도전성 필러인 다중벽 탄소나노튜브(MWNT)와 스테인레스강 단섬유(SSF)를 첨가하여 복합체를 제조하였으며, 이에 대한 표면저항 및 기계적 특성을 조사하였다. 표면저항을 측정한 결과 PP/MWNT에 소량의 SSF를 첨가하였을 때 더 낮은 MWNT 함량에서 percolation threshold가 나타났다. 그리고 제조된 복합체에 대한 인장시험 결과 순수 PP와 비교해서 파괴점 신장률은 감소하였으나 탄성률과 강도는 증가하였다. 또한 동역학분석을 통하여 MWNT와 SSF 복합체의 저장탄성률과 tan δ에 미치는 영향을 조사하였으며, SEM을 이용하여 필러들의 모폴로지 및 복합체의 파단면을 관찰하였다.

Keywords: polypropylene; multi-walled carbon nanotube; stainless steel short fiber; surface resistivity; tensile properties.

References
  • 1. Al-Saleh MH, Sundararaj UT, Carbon, 47, 2 (2009)
  •  
  • 2. Lee BO, Woo WJ, Kim MS, Macromol. Mater. Eng., 286, 114 (2001)
  •  
  • 3. Das NC, Maiti S, J. Mater. Sci., 43(6), 1920 (2008)
  •  
  • 4. Arjmand M, Mahmoodi M, Gelves GA, Park S, Sundararaj UT, Carbon, 49, 3430 (2011)
  •  
  • 5. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejakovic DA, Yoo JW, Epstein AJ, Appl. Phys. Lett., 84, 589 (2004)
  •  
  • 6. Yang YL, Gupta MC, Dudley KL, Lawrence RW, Nano. Lett., 5, 2131 (2005)
  •  
  • 7. Arjmand M, Apperley T, Okoniewski M, Sundararaj UT, Carbon, 50, 5126 (2012)
  •  
  • 8. McNally T, Boyd P, McClory C, Bien D, Moore I, Millar B, J. Appl. Polym. Sci., 107(3), 2015 (2008)
  •  
  • 9. Mironov VS, Park M, Choe C, Kim J, Lim S, Ko H, J. Appl. Polym. Sci., 84(11), 2040 (2002)
  •  
  • 10. Motlagh GH, Hrymak AN, Thompson MR, J. Polym. Sci. B: Polym. Phys., 45(14), 1808 (2007)
  •  
  • 11. Kim CJ, Choi HD, Suh KS, Yoon HG, Polym.(Korea), 27(3), 201 (2003)
  •  
  • 12. Wong KH, Pickering SJ, Rudd CD, Compos. Part A, 41, 693 (2010)
  •  
  • 13. Chen CS, Chen WR, Chen SC, Chien RD, Int. Commun. Heat Mass Transfer, 35, 744 (2008)
  •  
  • 14. Sun X, Cheng Y, Wu H, Adv. Mater. Res., 472, 748 (2012)
  •  
  • 15. Chang H, Kao MJ, Huang KD, Kuo CG, Huang SY, J. Nanosci. Nanotechnol., 11, 1754 (2011)
  •  
  • 16. Fu H, Liao B, Qi FJ, Sun BC, Liu AP, Ren DL, Compos. Part B, 39, 585 (2008)
  •  
  • 17. Smuckler J, Finnerty P, Proceedings of the American Chemical Society Meeting, Chicago (1983)
  •  
  • 18. Ward S, Bolvari A, Gorry B, SAMPE J., 26, 9 (1990)
  •  
  • 19. Jeong DS, Nam BU, Polym.(Korea), 35(1), 17 (2011)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2014; 38(2): 250-256

    Published online Mar 25, 2014

  • Received on Nov 15, 2013
  • Accepted on Dec 13, 2013