Article
  • Fabrication and Characterization of PCL/TiO2 Nanoparticle 3D Scaffold
  • Kim JH, Lee OJ, Sheikh FA, Ju HW, Moon BM, Park HJ, Park CH
  • PCL/TiO2 Nanoparticle 3차원 지지체 제조 및 특성 평가
  • 김정호, 이옥주, Sheikh FA, 주형우, 문보미, 박현정, 박찬흠
Abstract
Polycaprolactone (PCL) is a synthetic biodegradable polymer with excellent mechanical properties. TiO2 (titanium dioxide) has a hydrophilic, high density and excellent biocompatibility. In this work, we produced three-dimensional porous scaffolds with PCL and TiO2 nanoparticles using a salt-leaching method. Physical properties of the scaffolds were analyzed by FE-SEM, FTIR, TGA and compressive strength. Interestingly, the addition of TiO2 nanoparticles decreased the water absorption and swelling ratio of the porous scaffolds. However, the compressive strength was increased by TiO2. CCK-8 assay, which is generally used for the analysis of cell growth, shows that TiO2 nanoparticles have no cytotoxicity. Taken together, we suggest that the PLC/TiO2-scaffold can be used for biomedical applications.

Polycaprolactone(PCL)은 생분해성 고분자로 인장강도, 신장률, 충격강도 등의 기계적 물성이 우수하다. TiO2 (titanium dioxide) nanoparticle은 친수성으로 밀도가 높고 생체적합성이 우수하다. 본 연구에서는 PCL과 TiO2(titanium dioxide) nanoparticle을 이용하여 salt-leaching방법으로 3차원 다공성 지지체를 제작하였다. 제작한 지지체를 FESEM, FTIR, TGA, 압축강도 측정 등을 통해 물성을 분석하였다. TiO2 nanoparticle에 의해 물흡수도와 팽윤도는 감소하였으나 압축강도는 증가하였다. CCK-8 assay를 통해 세포의 증식률을 확인한 결과, TiO2 nanoparticle에 의한 세포 독성은 없는 것으로 확인되었다. 이러한 연구결과는 PCL/TiO2 nanoparticle 지지체의 생체재료로 사용가능성을 제시하였다.

Keywords: PCL; TiO2 nanoparticle; scaffold; salt-leaching.

References
  • 1. Chan BP, Leong KW, Eur. Spine. J., 17, 467 (2008)
  •  
  • 2. Kim TG, Shin H, Lim DW, Adv. Funct. Mater., 22(12), 2446 (2012)
  •  
  • 3. Sachlos E, Czernuszka JT, Eur. Cell Mater., 12, 29 (2003)
  •  
  • 4. Blackwood KA, Bock N, Dargaville TR, Woodruff MA, Int. J. Polym. Sci., 25, 1 (2012)
  •  
  • 5. Sahoo S, Ang LT, Goh JCH, Toh SL, J. Biomed. Mater. Res. Part A, 12, 1539 (2009)
  •  
  • 6. Leor J, Amsalem Y, Cohen S, Pharmacol. Therapeut., 13, 151 (2005)
  •  
  • 7. Owen SC, Shoichet MS, Wiley Intersci., 11, 1321 (2010)
  •  
  • 8. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS, Int. J. Polym. Sci., 19, 1 (2011)
  •  
  • 9. Kim SH, Kim SH, Kim YH, Polymer Sci. Tech., 16, 468 (2005)
  •  
  • 10. Kumar G, Bristow JF, Smith PJ, Payne GF, Polymer, 12, 2157 (2000)
  •  
  • 11. Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL, Polymers, 2, 522 (2010)
  •  
  • 12. Egana AL, Scheibel T, Biotechnol. Appl. Biochem., 13, 155 (2010)
  •  
  • 13. Augst AD, Kong HJ, Mooney DJ, Macromol. Biosci., 6, 623 (2006)
  •  
  • 14. Rezwan K, Chen QZ, Blaker JJ, Ahluwalia A, Biomaterials, 27, 3413 (2006)
  •  
  • 15. Goldstein SA, J. Biomech., 20, 1055 (1987)
  •  
  • 16. Haghi M, Hekmatafshar M, Janipour MB, Gholizadeh SS, Faraz MK, Sayyadifar F, Ghaedi M, Intl. J. Adv. Biotechnol. Res., 3, 621 (2012)
  •  
  • 17. Wen Z, Ci S, Mao S, Cui S, Lu G, Yu K, Luo S, He Z, Chen J, J. Power Sources, 7, 100 (2013)
  •  
  • 18. Amna T, Hassan MS, Shin WS, Ba HV, Lee HK, Khil MS, Hwang IH, Colloid Surface B, 6, 424 (2012)
  •  
  • 19. Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C, Acta Biomater., 12, 904 (2011)
  •  
  • 20. Choi MS, Han HD, Seong H, Park ES, Chi SC, Shin BC, J. Korean Chem. Soc., 50, 3 (2006)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2014; 38(2): 150-155

    Published online Mar 25, 2014

  • Received on Sep 10, 2013
  • Accepted on Nov 6, 2013