Article
  • Synthesis of Polymerizable Amphiphiles with Basic Oligopeptides for Gene Delivery Application
  • Bae SJ, Choi H, Choi JS
  • 염기성 올리고펩티드 유도체를 가진 고분자 리피드의 합성 및 유전자 전달 효과 연구
  • 배선주, 최혜, 최준식
Abstract
Polydiacetylene (PDA) is made by photopolymerization of self-assembled diacetylene monomers. If diacetylene monomers are arranged systematically and close enough with distance of atoms, 1,4-addition polymerization will occur by the irradiation of 254 nm ultraviolet rays and then PDA will have alternated ene-yne polymer chains at the main structure. Aqueous solutions of diffused PDA is tinged with blue which shows λmax 640 nm. Visible color changes from blue to red occurs in response to a variety of environmental perturbations, such as temperature, pH, and ligand-receptor interactions. In this study, we synthesized cationic peptides - PCDA(10,12-pentacosadyinoic acid) liposome using a solid phase peptide synthesis (SPPS) method and prepared liposome solutions at various molar ratios using MPEG-PCDA. When mammalian cells were treated with the liposomes, high transfection efficiency and low toxicity were observed.

폴리디아세틸렌(polydiacetylene, PDA)은 자기조립된 디아세틸렌(diacetylene) 단량체의 광중합에 의해 만들어진다. 디아세틸렌 단량체들이 조직적으로 배열되면 254 nm의 자외선 노광에 의해 1,4-첨가 중합이 일어나 고분자주사슬에 이중결합과 삼중결합이 교대로 존재하는 폴리디아세틸렌이 만들어진다. 폴리디아세틸렌 수용액은 일반적으로 약 640 nm에서 최대흡수파장을 지니는 청색을 띠게 되며 여기에 온도나 pH의 변화, 다른 물질의 결합 등 외부 자극에 의해 약 550 nm의 최대 흡수 파장을 띠는 적색으로 색 전이가 일어나게 된다. 본 연구에서, 우리는 고체상 펩티드 합성을 이용하여 PCDA(10,12-pentacosadyinoic acid) 리포좀의 표면에 양이온성 올리고펩티드를 도입하였다. 또한 다양한 몰 비율로 리포좀 수용액을 제조하여 동물 세포에 트랜스펙션한 결과, 향상된 유전자 전달 효율과 낮은 독성을 보이는 것을 확인하였고, PCDA의 특성을 이용하여 세포에 처리 후 세포 관련 비표지 형광을 관찰하였다.

Keywords: polydiacetylene; cationic liposome; gene delivery; amino acid; polyethylene glycol.

References
  • 1. Charych DH, Nagy JO, Spevak W, Bednarski MD, Science., 261, 585 (1993)
  •  
  • 2. Huo Q, Russell KC, Leblanc RM, Langmuir, 15(11), 3972 (1999)
  •  
  • 3. Kim JM, Lee JS, Choi H, Sohn D, Ahn DJ, Macromolecules, 38(22), 9366 (2005)
  •  
  • 4. Okada S, Peng S, Spevak W, Charych D, Acc. Chem. Res., 31, 229 (1998)
  •  
  • 5. Ringsdorf H, Schlarb B, Venzmer J, Ang. Chem. Int. Ed., 27, 113 (1988)
  •  
  • 6. Sarkar A, Okada S, Komatsu K, Nakanishi H, Matsuda H, Macromolecules, 31(17), 5624 (1998)
  •  
  • 7. Carpick RW, Sasaki DY, Marcus MS, Eriksson MA, Burns AR, J. Phys.-Condens. Mat., 16, R679 (2004)
  •  
  • 8. Lee SW, Kang CD, Yang DH, Lee JS, Kim JM, Ahn DJ, Sim SJ, Adv. Funct. Mater., 17(13), 2038 (2007)
  •  
  • 9. Yoon J, Chae SK, Kim JM, J. Am. Chem. Soc., 129(11), 3038 (2007)
  •  
  • 10. Yuan ZZ, Lee CW, Lee SH, Angew. Chem. Int. Ed., 43, 4197 (2004)
  •  
  • 11. Crystal RG, Science, 270(5235), 404 (1995)
  •  
  • 12. Fujita T, Furuhata M, Hattori Y, Kawakami H, Toma K, Maitani Y, J. Contr. Rel., 129, 124 (2008)
  •  
  • 13. Johnson-Saliba M, Jans DA, Curr. Drug Targets., 2, 371 (2001)
  •  
  • 14. Wong SY, Pelet JM, Putnam D, Prog. Polym. Sci., 32, 799 (2007)
  •  
  • 15. Choi JS, Lee EJ, Jang HS, Park JS, J. Biochem. Mol.Biol., 33, 476 (2000)
  •  
  • 16. Furuhata M, Kawakami H, Toma K, Hattori Y, Maitani Y, Int. J. Pharm., 316, 109 (2006)
  •  
  • 17. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP, Biomaterials., 29, 3477 (2008)
  •  
  • 18. Mulligan RC, Science., 260, 926 (1993)
  •  
  • 19. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R, Nature Nanotech., 2, 751 (2007)
  •  
  • 20. Kwon SK, Kim SW, Kim YJ, Polym.(Korea), 34(6), 501 (2010)
  •  
  • 21. Kwon SK, Jeong KH, Kim YJ, Polym.(Korea), 33(3), 213 (2009)
  •  
  • 22. Choi JS, Nam K, Park JY, Lee JK, Park JS, J. Contr.Rel., 99, 445 (2004)
  •  
  • 23. Yu GS, Bae YM, Choi H, Kong B, Choi IS, Choi JS, Bioconjug. Chem., 22, 1046 (2011)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2013; 37(1): 94-99

    Published online Jan 25, 2013

  • Received on Aug 29, 2012
  • Accepted on Sep 28, 2012