Article
  • Anionic Polymerization of Hexafluoropropylene Oxide Using Hexafluoropropylene Oligomer
  • Lee SG, Ha JW, Park IJ, Lee SB, Lee JD
  • 헥사플루오르프로필렌 올리고머를 사용한 헥사플루오르프로필렌 옥사이드의 음이온 중합
  • 이상구, 하종욱, 박인준, 이수복, 이종대
Abstract
Anionic polymerization of hexafluoropropylene oxide (HFPO) was investigated under various reaction conditions such as various hexafluoropropylene (HFP) oligomers composed of dimer and trimer, reaction temperatures, and feeding rates of hexafluoropropylene oxide monomer. HFP oligomer was synthesized from cesium fluoride (CsF) and HFP in tetraethyleneglycol dimethylether (TG). Under 5 g of CsF, 200 g of HFP, 10 g of TG, and reaction temperature 30 ℃, HFP dimer content in oligomer was relatively increased. HFPO oligomer with a high molecular weight (Mw 3600) was synthesized in conditions of reaction temperature 0 ℃, HFP oligomer with 35.1% of dimer, and 1.85 g/min of HFPO feeding rate. Otherwise, chain transfer was increased under unoptimized reaction conditions. Consequently, it was found that reaction conditions impact chain propagation and chain transfer in the anionic polymerization of HFPO.

Hexafluoropropylene(HFP) dimer와 trimer로 구성된 올리고머의 조성비, 반응온도 그리고 hexafluoropropylene oxide(HFPO) 투입속도가 HFPO 음이온 중합반응에 미치는 영향 등을 알아보았다. HFP 올리고머는 불화금속 CsF와 TG를 사용한 음이온 반응을 통해 합성하였고, CsF 5 g, TG 10 g 그리고 반응온도 0 ℃에서 합성된 HFP 올리고머의 dimer 함량은 상대적으로 높은 35.1%를 나타내었다. HFPO 음이온 중합의 경우, 반응온도 0 ℃, HFP dimer 35.1%를 포함하고 있는 올리고머와 HFPO 투입속도 1.85 g/min에서 Cs(HFPO)n 알콕사이드는 상대적으로 원활한 사슬성장을 하면서 중량평균 분자량 3600을 나타내었다. 반면, 반응온도 10 ℃ 및 증가된 HFPO 투입속도에서는 알콕사이드의 Fδ-의 이탈현상을 촉진시켜 중평균 분자량은 감소되었다. 결론적으로, HFP 올리고머를 용매로 사용한 HFPO 음이온 중합반응의 사슬성장 및 사슬전이는 용매의 조성, 반응온도 및 단량체의 투입속도에 영향을 받고 있음을 알 수 있었다.

Keywords: hexafluoropropylene oxide; anionic polymerization; hexafluoropropylene oligomer.

References
  • 1. Jones WR, Snyder CE, ASLE Trans., 23, 253 (1980)
  •  
  • 2. Moulder JF, Hammond JS, Smith KL, Appl. Surf. Sci., 25, 446 (1986)
  •  
  • 3. Mate CM, Tribol. Lett., 4, 119 (1998)
  •  
  • 4. Laurenson L, Dennis NTM, Newton J, Vacuum., 29, 433 (1979)
  •  
  • 5. Vertes M, Vacuum., 44, 769 (1993)
  •  
  • 6. Bhushan B, Trans. ASME. J. Tribol., 114, 420 (1992)
  •  
  • 7. Fusaro RL, Lubr. Eng., 51, 182 (1995)
  •  
  • 8. Zaretsky EV, Tribol. Int., 23, 75 (1990)
  •  
  • 9. Del Pesco TW, “Perfluoropolyethers”, in Synthetic Lubricants and High-Performance Functional Liquids, Shubkin RL, Editor, Marcel Dekker, New York, 145 (1993)
  •  
  • 10. Bhushan B, Wear., 136, 169 (1990)
  •  
  • 11. Mobbs RH, Heatley F, Price C, Booth C, Prog. Rubber Plast. Technol., 11, 94 (1995)
  •  
  • 12. Sianesi D, Zamboni V, Fontanelli R, Binaghi M, Wear., 18, 85 (1971)
  •  
  • 13. Ohsaka Y, Petrotech(Tokyo)., 8, 840 (1985)
  •  
  • 14. Dupont, British Patent 904,877 (1962)
  •  
  • 15. Park EY, Lee SG, Ha JW, Park IJ, Lee SB, Lee Y, Polym.(Korea), 32(4), 397 (2008)
  •  
  • 16. Gumprecht WH, “The preparation and thermal behavior of hexapropylene epoxide polymers”, in Proceedings of the Fourth International Symposium on Fluorine Chemistry, Colorado (1967)
  •  
  • 17. Moore EP, U.S. Patent 3,322,826 (1967)
  •  
  • 18. Arbogast FL, U.S. Patent 3,412,148 (1968)
  •  
  • 19. Lee SG, Ha JW, Park IJ, Lee SB, Lee JD, Polym.(Korea), 32(4), 385 (2008)
  •  
  • 20. Kostjuk SV, Ortega E, Ganachaud F, Ameduri B, Boutevin B, Macromolecules, 42(3), 612 (2009)
  •  
  • 21. Martini T, U.S. Patent 3,917,724 (1975)
  •  
  • 22. Alfons G, Konrad VW, U.S. Patent 5,387,728 (1995)
  •  
  • 23. Hill JT, J. Macromol. Sci. Chem., A8, 499 (1974)
  •  
  • 24. Karis TE, Marchon B, Hopper DA, Siemens RL, J.Fluorine Chem., 118, 81 (2002)
  •  
  • 25. Lee SG, Lee KW, Ha JW, So WW, Park IJ, Lee SBProc. 15th Eur. Symp. Fluorine Chem., Prague, 364 (2007)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2013; 37(1): 80-85

    Published online Jan 25, 2013

  • Received on Aug 20, 2012
  • Accepted on Sep 24, 2012