Article
  • Characteristics and Biocompatibility of Electrospun Nanofibers with Poly(L-lactide-co-ε-caprolactone)/Marine Collagen
  • Kim WJ, Shin YM, Park JS, Gwon HJ, Kim YS, Shin H, Nho YC, Lim YM, Chong MS
  • 전기 방사법을 통해 제조된 Poly(L-lactide-co-ε -caprolactone)/Marine Collagen 나노파이버의 특성 및 세포친화력 평가
  • 김우진, 신영민, 박종석, 권희정, 김용수, 신흥수, 노영창, 임윤묵, 정무상
Abstract
The uniform nanofibers of poly(L-lactide-co-ε-caprolactone) (PLCL) with different contents of marine collagen (MC) were successfully prepared by electrospinning method. The effects of the major parameters in electrospinning process such as tip to target distance (TTD), voltage, nozzle size and flow rate on the average diameter of the electrospun nanofiber were investigated in generating composite nanofiber. The diameter and morphology of the nanofibers were confirmed by a scanning electron microscopy (SEM). Also, we measured a water contact angle to determine the surface wettability of the nanofibers. The average diameter of the nanofibers decreased as the value of TTD, MC contents, and voltages increased in comparison with that of pristine PLCL nanofiber. In contrast, the diameter of the nanofibers increased as the flow rate and inner diameter of nozzle increased in comparison with that of pristine PLCL. In addition, the hydrophilicity of the nanofiber and attachment of MG-63 cells on the sheets increased as incorporated collagen contents increased. Therefore, the marine collagen would be a potential material to enhance cellular interactivity of synthetic materials by mimicking the natural tissue.

본 연구의 목적은 전기방사법을 사용하여 poly(L-lactide-co-ε-caprolactone) (PLCL)과 marine collagen (MC)이 혼합된 나노섬유를 제조하는 것이다. 전기방사된 나노섬유의 직경과 형태는 여러 공정 변수에 의해서 변화되는데, PLCL과 MC의 혼합비, 노즐과 콜렉터와의 거리, 노즐의 직경, 용액의 방출 속도 그리고 전기장의 세기 변화에 따라 나노파이버의 직경을 주사전자현미경을 통해서 분석하였다. 또한 제조된 나노파이버의 표면변화를 확인하기 위해 물과의 접촉각을 측정하였으며, 나노파이버의 세포 친화성을 평가하기 위해 MG-63을 이용하여 생존율과 흡착형태를 주사전자현미경과 형광현미경을 통해서 관찰하였다. 이와 같은 연구 결과, 방사거리, MC의 함량, 전기장의 세기가 증가할수록 제조된 나노파이버의 평균직경은 감소하는 경향을 나타냈다. 또한 MC의 함량이 증가할수록 나노파이버의 친수성이 증가하였고 세포독성은 관찰되지 않았다. 이에 따라 해양유래 생물에서 추출한 콜라겐은 조직공학용 소재에 새롭게 사용될 수 있을 것으로 예상된다.

Keywords: poly(L-lactide-co-ε-caprolactone); marine collagen; nanofiber; electrospinning.

References
  • 1. Uyar T, Besenbacher F, Polymer, 49(24), 5336 (2008)
  •  
  • 2. Reneker DH, Yarin AL, Fong H, Koombhongse S, J. Appl. Phys., 87, 4531 (2000)
  •  
  • 3. Matthews JA , Boland ED, Wnek GE, Simpson DG, Bowlin GL, J. Bioact. Compat. Polym., 18, 125 (2003)
  •  
  • 4. Xin X, Hussain M, Mao JJ, Biomaterials., 28, 316 (2007)
  •  
  • 5. Yoshimoto H, Shin YM, Terai H, Vacanti JP, Biomaterials., 24, 2077 (2003)
  •  
  • 6. Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ, Biomaterials., 26, 1405 (2005)
  •  
  • 7. Kim K, Yu M, Zong X, Chiu J, Fang D, Seo YS, Hsiao BS, Chu B, Hadjiargyrou M, Biomaterials., 24, 4977 (2003)
  •  
  • 8. Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, Yao K, Eur. Polym. J., 42, 2013 (2006)
  •  
  • 9. Homayoni H, Ravandi SAH, Valizadeh M, Carbohydr. Polym., 77, 656 (2009)
  •  
  • 10. Venugopal J, Ma LL, Yong T, Ramakrishna S, Cell.Biol. Int., 29, 861 (2005)
  •  
  • 11. Lee J, Tae G, Kim YH, Park IS, Kim SH, Biomaterials., 29, 1872 (2008)
  •  
  • 12. Spasova M, Stoilova O, Manolova N, Rashkov I, Altankov G, J. Bioact. Compat. Polym., 22, 62 (2007)
  •  
  • 13. Kwon IK, Kidoaki S, Matsuda T, Biomaterials., 26, 3929 (2005)
  •  
  • 14. Jeong SI, Kim BS, Kang SW, Kwon JH, Lee YM, Kim SH, Kim YH, Biomaterials., 25, 5939 (2004)
  •  
  • 15. Garkhal K, Verma S, Tikoo K, Kumar N, J. Biomed.Mater. Res. Part A., 82, 747 (2007)
  •  
  • 16. Honda M, Morikawa N, Hata K, Yada T, Morita S, Ueda M, Kimata K, Biomaterials., 24, 3511 (2003)
  •  
  • 17. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Roh S, Cho JJ, Park WH, Min BM, Biomaterials., 27, 1452 (2006)
  •  
  • 18. Stitzel JD, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL, J. Biomater. Appl., 16, 22 (2001)
  •  
  • 19. Ogawa M, Portier RJ, Moody MW, Bell J, Schexnayder MA, Losso JN, Food Chem., 88, 495 (2004)
  •  
  • 20. Song E, Kim SY, Chun T, Byun HJ, Lee YM, Biomaterials., 27, 2951 (2006)
  •  
  • 21. Jeong SI, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, Lee SB, Lee YM, Biomaterials., 28, 1115 (2007)
  •  
  • 22. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S, Compos. Sci. Technol., 63, 2223 (2003)
  •  
  • 23. Kwon IK, Matsuda T, Biomacromolecules, 6(4), 2096 (2005)
  •  
  • 24. Chen Z, Mo X, Qing F, Mater. Lett., 61, 3490 (2007)
  •  
  • 25. Heikkil P, Harlin A, Eur. Polym. J., 44, 3067 (2008)
  •  
  • 26. Yan L, Zhengming H, Yandong L, Eur. Polym. J., 42, 1696 (2006)
  •  
  • 27. Zhao SL, Wu XH, Wang LG, Huang Y, J. Appl. Polym. Sci., 91(1), 242 (2004)
  •  
  • 28. Subbiah T, Bhat GS, Tock RW, Pararneswaran S, Ramkumar SS, J. Appl. Polym. Sci., 96(2), 557 (2005)
  •  
  • 29. Beachley V, Wen X, Mater. Sci. Eng. C., 29, 663 (2009)
  •  
  • 30. Megelski S, Stephens JS, Chase DB, Rabolt JF, Macromolecules, 35(22), 8456 (2002)
  •  
  • 31. Zeng J, Chen XS, Xu XY, Liang QZ, Bian XC, Yang LX, Jing XB, J. Appl. Polym. Sci., 89(4), 1085 (2003)
  •  
  • 32. Cui WG, Li XH, Zhou SB, Weng J, J. Appl. Polym. Sci., 103(5), 3105 (2007)
  •  
  • 33. Acossay J, Marruffo A, Rincon R, Eubanks T, Kuang A, Polym. Adv. Technol., 18, 180 (2007)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2012; 36(2): 124-130

    Published online Mar 25, 2012

  • Received on May 30, 2011
  • Accepted on Aug 29, 2011