Article
  • Study on the Curing Properties of Photo-curable Acrylate Resins
  • Kim SH, Chang HS, Park S, Song K
  • 광경화성 아크릴 수지의 경화특성에 관한 연구
  • 김성현, 장현석, 박선희, 송기국
Abstract
The curing mechanism and characteristics of UV curable acrylate resins were studied using Photo-DSC, FTIR, and Raman spectroscopy. Effects of chemical structures of acrylate, numbers of functional group, and UV intensity on curing kinetics were investigated with Photo-DSC. FTIR and Raman spectroscopy has been used to understand curing mechanisms and reaction conversion. In order to investigate the effect of oxygen on the photo-curing reaction, the curing process was compared between the acrylate and thiol-ene resins. The reaction conversion was found to be less than 80% for acrylate resins. The photo-curing reaction of the acrylate resin could not proceed to the end because of oxygen which acts as a reaction inhibitor while the thiol-ene resin was hardly affected from oxygen during the curing process.

광경화성 수지인 아크릴레이트의 경화 특성과 메카니즘에 대하여 Photo-DSC와 FTIR, Raman spectrometer를 이용하여 조사하였다. 아크릴레이트 종류, 관능기 수, 광 세기 등에 따른 경화 속도에 관한 정보는 시간에 따른 Photo-DSC curve에서 계산하였고, FTIR과 Raman을 이용하여 경화 반응의 전환율과 반응 메카니즘을 조사하였다. 광경화 반응에서 산소의 영향을 알아보기 위하여 아크릴레이트 수지와 thiol-ene 수지의 경화과정을 비교하였는데, 공기 중 산소가 아크릴레이트의 라디칼 반응에서 금지제로 작용하여 아크릴레이트 수지는 80% 이하의 전환율을 보인 반면 thiol-ene 수지는 산소가 반응에 영향을 미치지 않는 것을 알 수 있었다.

Keywords: acrylate resin; UV cure; photo-DSC; FTIR; Raman

References
  • 1. Hong WUV cure coating, Chosun Univer. Press (2002)
  •  
  • 2. Do HS, Kim DJ, Kim HJ, J. Adhe. Inter., 4, 41 (2003)
  •  
  • 3. Lee NY, Kim YS, Macromol. Rapid Commun., 28(20), 1995 (2007)
  •  
  • 4. Hirasawa T, Taniguchi J, Ohtaguchi M, Sakai N, Elect. Commu. Jap., 92, 51 (2009)
  •  
  • 5. Rutz CS, Machado LB, Volponi JE, Pino ES, J. Therm. Anal. Cal., 75, 507 (2004)
  •  
  • 6. Studer K, Decker C, Beck E, Schwalm R, Prog. Org. Coat., 48, 92 (2003)
  •  
  • 7. Studer K, Decker C, Beck E, Schwalm R, Prog. Org. Coat., 48, 101 (2003)
  •  
  • 8. Hageman HJ, Jansen LJ, Makromol. Chem., 189, 2781 (1988)
  •  
  • 9. Fimia A, Lopez N, Mateos F, Sastre R, Pineda J, Amat-guerri F, J. Mod. Opt., 40, 699 (1993)
  •  
  • 10. O'Brien AK, Cramer NB, Bowman CN, J. Polym. Sci. A: Polym. Chem., 44(6), 2007 (2006)
  •  
  • 11. Feng L, Suh BI, J. Appl. Polym. Sci., 112(3), 1565 (2009)
  •  
  • 12. Oh S, Park K, Park C, Bae W, Clean Technol., 1, 19 (2006)
  •  
  • 13. Scherzer T, Decker U, Radiat. Phys. Chem., 55, 615 (1999)
  •  
  • 14. Wang F, Hu JQ, Tu WP, Prog. Org. Coat., 62, 245 (2008)
  •  
  • 15. Parnell S, Min K, Cakmak M, Polymer, 44(18), 5137 (2003)
  •  
  • 16. Hsieh KH, Kuo CH, Dai CA, Chen WC, Peng TC, Ho GH, J. Appl. Polym. Sci., 91(5), 3162 (2004)
  •  
  • 17. Cramer NB, Bowman CN, J. Polym. Sci. A: Polym. Chem., 39(19), 3311 (2001)
  •  
  • 18. Cramer NB, Reddy SK, Cole M, Hoyle C, Bowman CN, J. Polym. Sci. A: Polym. Chem., 42(22), 5817 (2004)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2010; 34(5): 469-473

    Published online Sep 25, 2010

  • Received on Jul 11, 2010
  • Accepted on Sep 3, 2010