Article
  • Fabricating Highly Aligned Electrospun Poly(ε -caprolactone) Micro/Nanofibers for Nerve Tissue Regeneration
  • Yoon H, Lee H, Park GM, Kim GH
  • 신경세포 재생을 위한 고배열성 Poly(ε - caprolactone) 마이크로/나노섬유 제조 공정에 관한 연구
  • 윤현, 이행남, 박길문, 김근형
Abstract
Recently, an electrospinning process, which is one of various nanotechnologies, has been used in fabricating micro/nanosized fibers. The fabricated electrospun micro/nanofibers has been widely applied in biomedical applications, specially in tissue regeneration. In this study, we fabricated highly aligned electrospun biodegradable and biocompatible poly(ε-caprolactone)(PCL) micro/nanofibers by using a modified electrospinning process supplemented with a complex electric field. From this process, we can attain highly aligned electrospun nanofibers compared to that fabricated with the normal electrospinning process. To observe the feasibility of the highly aligned electrospun mat as a biomedical scaffold, nerve cells(PC-12) was cultured and it was found that the cells those were well oriented to the direction of aligned fibers.

전기방사공정에 의해 고분자의 나노 크기의 섬유를 만드는 기술로 널리 사용되어졌으며, 제작된 나노섬유는 그 높은 표면적과 형태학적 특성때문에 조직재생 공학분야에서 많이 사용되어져 왔다. 본 연구에서는 기존의 전기방사공정을 개선한 복합전기장을 이용하여 생분해성/생체적합성 poly(ε-caprolactone)(PCL) 마이크로/나노섬유를 제작하였고, 기존의 나노섬유의 배열성보다 제어가 가능한 배열성을 갖는 공정시스템을 통하여 보다 우수한 배열성을 갖는 PCL 나노섬유를 제작하였다. 고배열된 PCL 나노섬유는 신경세포 재생을 위한 세포담체로서의 가능성을 확인하고자 신경세포(PC-12)를 배양하였으며 그 결과 높은 배열성을 갖은 PCL 나노섬유 매트에서 신경세포의 배열성이 얻어짐을 확인하였다.

Keywords: a complex field electrospinning process; micro/nanofiber; poly(ε-caprolactone); nerve cells

References
  • 1. Chun SW, Fiber Technology and Industry, 12, 2 (2008)
  •  
  • 2. Formhals AUS Patent 1, 975, 504 (1934)
  •  
  • 3. Taylor GI, Proceedings of Royal Society of London, A280, 383 (1964)
  •  
  • 4. Reneker DH, Yarine AL, Fong H, Koombhongse S, J. Appl. Phys., 87, 4531 (2009)
  •  
  • 5. Doshi J, Reneker DH, J. Electrostat., 35, 151 (1995)
  •  
  • 6. Fong H, Chun I, Reneker DH, Polymer, 40(16), 4585 (1999)
  •  
  • 7. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB, Polymer, 42(1), 261 (2001)
  •  
  • 8. Hohman MM, Shin M, Rutledge GC, Brenner MP, Physics of Fluids, 13, 2201 (2001)
  •  
  • 9. Kim GT, Ahn YC, Lee JK, Kattamuri N, Sung CM, ILASS-Korea, 8, 31 (2003)
  •  
  • 10. Lee DW, Park HY, Yu YJ, Kang DG, Seo KH, Polym.(Korea), 32(1), 1 (2008)
  •  
  • 11. Deitzel JM, Kosik W, McKnight SH, Tan NCB, DeSimone JM, Crette S, Polymer, 43(3), 1025 (2002)
  •  
  • 12. Reneker DH, Chun I, Nanotechnology, 7, 216 (1996)
  •  
  • 13. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW, Biomaterials, 26, 1261 (2005)
  •  
  • 14. Oliva AA, James CD, Kingman CE, Neurochem. Res., 28, 1639 (2003)
  •  
  • 15. Yeung CK, Lauer L, Offenhausser A, Neurosci. Lett., 301, 147 (2001)
  •  
  • 16. Vogt AK, Wrobel G, Meyer W, Biomaterials, 26, 2549 (2005)
  •  
  • 17. Yilgor P, Sousa RA, Reis RL, Hasirci N, Hasirci V, Macromol. Symp., 269, 92 (2008)
  •  
  • 18. Li D, Wang Y, Xia Y, Nano Letters, 3, 1167 (2003)
  •  
  • 19. Zussman E, Theron A, Yarin AL, Appl. Phys. Lett., 82, 973 (2003)
  •  
  • 20. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S, Compos. Sci. Technol., 63, 2223 (2003)
  •  
  • 21. Kim GH, J. Polym. Sci. B: Polym. Phys., 44(10), 1426 (2006)
  •  
  • 22. Jones TB, J. Electrostat., 6, 69 (1979)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2010; 34(3): 185-190

    Published online May 25, 2010

  • Received on Aug 10, 2009
  • Accepted on Oct 1, 2009