Article
  • Enhancement of Wetting Characteristics for Anisotropic Conductive Adhesive with Low Melting Point Solder via Carboxylic Acid-based Novel Reductants
  • Kim HM, Kim JH
  • 카르복실산계 환원제를 통한 저융점 솔더입자가 포함된 이방성 전도성 접착제의 젖음 특성 향상 연구
  • 김효미, 김주헌
Abstract
The low viscous epoxy resin(bisphenol F) with carboxylic acid as the reductants was introduced for high performance and reliability in the ACA with a low melting point alloy filler system. The curing characteristics of the epoxy resin and temperature dependant viscosity characteristic of epoxy resin at the melting temperature of LMPA were investigated by dynamic mode of differential scanning calorimetry (DSC) and rheometer, respectively. Based on these thermo-rheological characteristics of epoxy resin and LMPA, the optimum process system was designed. In order to remove the oxide layer on the surface of LMPA particle, three different types of carboxyl acid-based reductant were added to the epoxy resin. The wetting angles were about 18° for carboxypropyldisilioxane, and 20.3° for the carboxy-2-methylethylsiloxane, respectively.

고 신뢰도와 높은 물성을 갖는 이방성 전도성접착제(anisotropic conductive adhesive, ACA)용 레진 개발을 위하여, 환원특성을 갖는 카르복실산을 포함한 bisphenol F계열의 에폭시 레진에 저융점 솔더입자(low melting point alloys, LMPA)를 분산시켜 제조하였다. LMPA의 융점에서의 에폭시 레진의 경화특성 및 온도에 따른 유변학 특성을 동적 시차 주사 열량계(differential scanning calorimeter, DSC)와 레오미터(rheometer)로 측정하여 최적화된 ACA 접합 공정을 설계하였다. 접합 공정시 LMPA 표면에 생성되는 산화막을 제거하여 높은 전기전도도와 안정적인 전기적 특성을 얻을 수 있도록 세가지 종류의 카르복실산을 환원제로 사용하여 각각의 젖음(wetting) 특성을 확인하였다. 부틸 카르복실산은 28°의 낮은 젖음각을 나타내었으나, 경화반응 중 다량의 기포가 발생하는 문제가 있었다. 그러나, 이관능성 카르복실산(1,3-bis(2-carboxypropyl)tetramethyl disiloxane(2-CTMS)) 및 1,3-bis(3-carboxypropyl)tetramethyl disiloxane(3-CTMS))의 경우, 기포의 발생 없이 각각 18°와 20.3°의 매우 우수한 젖음 특성을 보였다.

Keywords: low melting point alloys(LMPA); anisotropic conductive adhesive(ACA); wetting; thermorheological property

References
  • 1. Liu JConductive Adhesives for Electronics Packaging, Electrochemical Publications Ltd., Port Erin, UK (1999)
  •  
  • 2. Abtew M, Selvaduray G, Mater. Sci. Eng.: R Rep., 27, 95 (2000)
  •  
  • 3. Suganuma K, Science, 5, 55 (2001)
  •  
  • 4. Jagt JC, Beris PJM, Lijten GFCM, IEEE Trans. CPMT-Part B, 18, 292 (1995)
  •  
  • 5. Li Y, Moon KS, Li H, Wong CPProc. 54th Electronic Components and Technology Conference, Las Vegas, NV, United States (2004)
  •  
  • 6. Kim JM, J. Kor. Weld. Joining Soc., 25, 133 (2007)
  •  
  • 7. Lai Z, Liu J, IEEE Trans. CPMT, 19, 647 (1996)
  •  
  • 8. Uddin MA, Alam MO, Chan YC, Chan HP, Microelecron. Reliab., 44, 505 (2004)
  •  
  • 9. Gamota RD, Melton MCIEEE/CPMT Transactions International Electronics Manufacturing Symposium, Seattle, WA (1996)
  •  
  • 10. Kim JM, Yasuda K, Fujimoto K, J. Electon. Mater., 34, 600 (2005)
  •  
  • 11. Fujimoto K, Yasuda K, Kim JMJP 3869688 (2006)
  •  
  • 12. Kim JM, Yasuda K, Rito M, Fujomoto K, Mater. Trans., 45, 157 (2004)
  •  
  • 13. Uddin MA, Alam MO, Chan YC, Chan HP, Microelecron. Reliab., 44, 505 (2004)
  •  
  • 14. Ardeleanu R, Voiculescu N, Marcu M, Roman G, Buchidau C, Sacarescu L, Sacarescu G, Macromol. Rapid Commun., 18(8), 739 (1997)
  •  
  • 15. Eom YS, Baek JW, Moon JT, Nam JD, Kim JM, Microelectron. Eng., 85, 327 (2008)
  •  
  • 16. Kim JM, Yang KC, Lee SB, Lee SH, Shin YE, Chang KH, Han JG, Eom YS, Moon JT, Baek JW, Nam JD, Mat. Sci. For., 580, 217 (2008)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2010; 34(1): 52-57

    Published online Jan 25, 2010

  • Received on Sep 7, 2009
  • Accepted on Oct 16, 2009