Article
  • Photoinduced Alignment Based on the Blend of Poly(vinyl cinnamate) and Oligomeric Cinnamate via Linear Polarized UV Irradiation onto Groove Patterned Surface
  • Sung SJ, Kim MR, Ahn D, Kim DH, Kang JK, Park JK, Cho KY
  • 폴리(비닐 신나메이트)와 올리고머 신나메이트 블렌드를 기반으로 한 그루브 패턴 표면의 광배향막
  • 성시준, 김미리, 안도원, 김대환, 강진규, 박정기, 조국영
Abstract
Photo-alignment property of groove patterned surface prepared from blend of poly(vinyl cinnamate) (PVCi) and oligomeric dicinnamate was investigated for the application for alignment layer of liquid crystal display. The study of the photoreaction kinetics using UV-vis spectrum with the irradiation time showed that the reaction rate of oligomeric cinnamate was enhanced compared to that of PVCi. Blend where PVCi was main component showed a slight improvement on the photoreaction rate. It was unable to obtain groove patterned surface only using oligomeric cinnamate itself owing to the high crystalline character. However, blending of PVCi made it possible to obtain clear surface pattern. Molecular orientation could be confirmed from the polar plot data. It can be suggested that blend of oligomeric cinnamate and polymeric cinnamate is promising material for the photoalignment layer.

액정표시소자의 광배향막으로 적용하기 위하여 올리고머 신나메이트와 폴리(비닐 신나메이트)(PVCi)의 블렌드를 이용하여 그루브 패턴을 형성하고 광배향 특성을 관찰하였다. UV-vis 스펙트럼 분광계를 이용하여 자외선 조사시간에 따른 광반응 속도를 평가한 결과 올리고머 신나메이트는 폴리(비닐 신나메이트)에 비해 빠른 반응속도를 나타내었다. 폴리(비닐 신나메이트)를 주성분으로 하여 올리고머 신나메이트를 블렌드한 경우 반응속도가 약간 향상되는 특성을 확인하였다. 올리고머 신나메이트는 높은 결정성으로 인해 표면 그루브 패턴을 단독으로 형성할 수 없었지만 폴리(비닐 신나메이트)와의 블렌드를 통하여 그루브 패턴을 형성할 수 있었으며 그루브 패턴에서도 polar plot에 의해 분자 배향성을 나타냄을 확인하였다. 올리고머 신나메이트와 고분자계 신나메이트의 블렌드를 통하여 반응속도의 향상과 박막 구조의 패턴을 형성하기에 적합함의 확인을 통해 새로운 광배향막 재료로 적용 가능함을 알 수 있었다.

Keywords: cinnamate; photo-alignment; oligomer; linear polarized UV

References
  • 1. Oldring PKT, ed.Chemistry and Technology of UV and EB formulation for coating, Inks and Paints, SITA Techn., London, Vols. 1-5 (1991)
  •  
  • 2. Schadt M, Schmitt K, Kozinkov V, Chigrinov V, Jpn. J. Appl. Phys., 31, 2155 (1992)
  •  
  • 3. O’Neill M, Kelly SM, J. Phys. D: Appl. Phys., 33, R67 (2000)
  •  
  • 4. Kim D, Ahn W, Ha K, Buluy O, Reznikov Y, Polym.(Korea), 31(5), 393 (2007)
  •  
  • 5. Choi J, Lim J, Song K, Polym.(Korea), 30(5), 417 (2006)
  •  
  • 6. Sung SJ, Cho KY, Hah H, Lee JM, Shim HK, Park JK, Polymer, 47(7), 2314 (2006)
  •  
  • 7. Sung SJ, Cho KY, Yoo JH, Kim WS, Chang HS, Cho I, Park JK, Chem. Phys. Lett., 394(4-6), 238 (2004)
  •  
  • 8. Li XD, Zhong ZX, Jin G, Lee SH, Lee MH, Macromol. Res., 14(3), 257 (2006)
  •  
  • 9. Sung SJ, Cho KY, Park JK, Mat. Sci. Eng. C-Bio. S., 24, 181 (2004)
  •  
  • 10. Hah H, Sung SJ, Cho KY, Park JK, Polym. Bull., 61, 383 (2008)
  •  
  • 11. Hah H, Sung SJ, Park JK, Appl. Phys. Lett., 90, 063508 (2007)
  •  
  • 12. Abdel-Mottaleb MMS, De Fyter S, Gesquiere A, Sieffert M, Klapper M, Mullen K, De Schryver FC, Nano Lett., 1, 353 (2001)
  •  
  • 13. Berreman DW, Mol. Cryst. Liq. Cryst., 23, 215 (1973)
  •  
  • 14. Hah H, Sung SJ, Han M, Lee S, Park JK, Mat. Sci. Eng. C-Bio. S., 27, 798 (2007)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2010; 34(1): 32-37

    Published online Jan 25, 2010

  • Received on Aug 3, 2009
  • Accepted on Sep 17, 2009