Article
  • Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites
  • Huang GC, Lee CH, Lee JK
  • 단섬유 강화 에폭시 복합재료의 열적/기계적 특성
  • 황광춘, 이충희, 이종근
Abstract
A cycloaliphatic epoxy/acidic anhydride system incorporating short carbon fibers (SCF) and short glass fibers (SGF) was fabricated and thermal/mechanical properties were characterized. At low filler content both SCF- and SGF-reinforced composites showed a similar decrease in coefficient of thermal expansion (CTE), measured by a thermomechanical analyzer, with increasing loadings, above which SCF became more effective than SGF at reducing the CTE. Experimental CTE data for the SCFreinforced composites is best described by the rule of mixtures at lower SCF contents and by the Craft-Christensen model at higher SCF contents. Storage modulus (E′ ) at 30 ℃ and 180 ℃ was greatly enhanced for short fiber-filled composites compared to unfilled specimens. Scanning electron microscopy of the fracture surfaces indicated that the decreased CTE and the increased E′ of the short fiber-reinforced composites resulted from good interfacial adhesion between the fibers and epoxy matrix.

고리지방족 에폭시와 산무수물 경화제계에 탄소단섬유(SCF)와 유리단섬유(SGF)를 첨가하여 복합재를 제조한 다음 이들의 열적/기계적 특성을 조사하였다. 열기계분석법으로 측정된 열팽창계수(CTE)의 감소 효과를 보면 낮은 단섬유 함량에서는 두 섬유가 거의 비슷하나, 함량이 증가하면 SCF가 SGF에 비해 훨씬 효과적이었다. SCF 강화 복합재에 대한 CTE 실험값을 이론식에 적용해 본 결과 함량이 낮을 때는 혼합법칙(mixture rule)에 잘 맞으며, 함량이 높아지면 Craft-Christensen 식에 근접하였다. 또한, 유리상(30 ℃)과 고무상(180 ℃)에서의 저장탄성률은 단섬유를 첨가하였을 때 크게 증가하였다. 전자주사현미경(SEM)으로 파단면을 관찰하여본 결과 이와 같은 결과는 단섬유와 에폭시 매트릭스간의 계면접착력과 밀접한 관계가 있음을 알 수 있었다.

Keywords: cycloaliphatic epoxy; acidic anhydride; short fiber; thermal expansion; dynamic mechanical properties

References
  • 1. Lee H, Kris NHandbook of Epoxy Resins, McGraw-Hill, New York (1982)
  •  
  • 2. Bouillon N, Pascault JP, Tighzert L, J. Appl. Polym. Sci., 38, 2103 (1989)
  •  
  • 3. Kaynak C, Orgun O, Tincer T, Polym. Test., 24, 455 (2005)
  •  
  • 4. Jeong MY, Lee DG, J. Mater. Process. Tech., 63, 375 (1997)
  •  
  • 5. Rogers KF, Phillips LN, Kingston-Lee DM, Yates B, Overy MJ, Sargent JP, McCalla BA, J. Mater. Sci., 12, 718 (1977)
  •  
  • 6. Gong XY, Polym. Adv. Tech., 7, 141 (1996)
  •  
  • 7. Alonso MV, Auad ML, Nutt S, Comp. Part A: Appl. Sci. Manufac., 37, 1952 (2006)
  •  
  • 8. Kaynak C, Arikan A, Tincer T, Polymer, 44(8), 2433 (2003)
  •  
  • 9. Arikan A, Kaynak C, Tincer T, Polym. Comp., 23, 790 (2002)
  •  
  • 10. Isitman NA, Aykol M, Ozkoc G, Bayram G, Kaynak C, Polym. Comp.in Press.
  •  
  • 11. Run M, Song H, Hao Y, Hu X, Yao C, Polym. Comp., 30, 776 (2009)
  •  
  • 12. Craft WJ, Christensen RM, J. Comp. Mater., 15, 2 (1981)
  •  
  • 13. Goertzen WK, Kessler MR, J. Therm. Anal. Calor., 93, 87 (2008)
  •  
  • 14. Agarwal BD, Broutman LJAnalysis and Performance of Fiber Composites, John Wiley & Sons, New York (1990)
  •  
  • 15. Preghenella M, Pegoretti A, Migliaresi C, Polymer, 46(26), 12065 (2005)
  •  
  • 16. Saavedra JT, Beceiro JL, Naya S, Artiaga R, Polym. Degrad. Stabil., 93, 1233 (2008)
  •  
  • 17. Goertzen WK, Kessler MR, J. Appl. Polym. Sci., 109(1), 647 (2008)
  •  
  • 18. Battistella M, Cascione M, Fiedler B, Wichmann MHG, Quaresimin M, Schulte K, Composites: Part A, 39, 1851 (2008)
  •  
  • 19. Nielsen LEMechanical Properties of Polymers and Composites, Marcel Dekker, New York (1974)
  •  
  • 20. Tao ZQ, Yang SY, Chen JS, Fan L, Eur. Polym. J., 43, 1470 (2007)
  •  
  • 21. Sun YY, Zhang ZQ, Moon KS, Wong CP, J. Polym. Sci. B: Polym. Phys., 42(21), 3849 (2004)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2009; 33(6): 530-536

    Published online Nov 25, 2009

  • Received on Apr 6, 2009
  • Accepted on Jul 31, 2009