Article
  • Introduction of Specific Interaction of Hydroxyapatite/Polylactide Composites
  • Kang JK, Lim JH, Moon HJ, Lee WK, Kim MR, Lee JK
  • 수산화인회석과 폴리락타이드 복합체에서 상호작용력의 도입
  • 강진규, 임준혁, 문명준, 이원기, 김미라, 이진국
Abstract
To increase mechanical properties of the hydroxyapatite/poly(L-lactide)(HA/PLLA) composite which was a potential bone substitute material, HA was modified by the surface grafting with D-lactide (DLA) and the formation of stereocomplexes between components was introduced. The composite films were prepared by the solvent-nonsolvent technique to minimize the precipitation of HA during drying. The structure and properties of the composites were investigated by thermal gravimetric analysis (TGA), differential scanning calorimeter, and scanning electron microscopy, and mechanical property measurements. TGA results showed that the amount of DLA grafted on the HA surfaces (g-HA) was 6 wt%. The obtained g-HA exhibited better dispersity in an organic solvent than HA. The formation of stereocomplexes in the composites was confirmed by the change in melting temperature. The mechanical properties of g-HA/PLLA composites were increased, compared to the HA/PLLA composites.

인공뼈의 잠재적인 재료로서 주목을 받는 hydroxyapatite(HA)와 poly(L-lactide)(PLLA) 복합체의 물 성을 개선하기 위하여 HA에 D-lactide(DLA)를 표면 그래프트(g-HA)하여 PLLA 사이의 스테레오 콤프렉스 형성을 도입하였다. 복합체 필름은 건조단계에서 HA의 침전을 최소화하기 위하여 용매-비용매법으로 제조하였다. 복합체의 구조와 물성은 thermal gravimetric analysis(TGA), differential scanning calorimeter, scanning electron microscopy 및 mechanical property 측정으로 확인하였다. TGA분석으로부터 HA에 대한 DLA의 표면 그래프트율은 6 wt%였고 HA에 비하여 유기용매에 대한 분산성이 증가하였다. 복합체의 스테레오 콤프렉스 형성은 용융온도의 변화로써 확인하고 HA/PLLA 복합체에 비하여 우수한 기계적 물성을 나타내었다.

Keywords: hydroxyapatite; poly(l-lactide); surface grafting; stereocomplex.

References
  • 1. Shi DL, Introduction to biomaterials, World Sci. Publ., Singapore, p. 19 (2005)
  •  
  • 2. Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH, J. Mater. Sci., 11, 2027 (1976)
  •  
  • 3. Akao M, Aoki H, Kato K, J. Mater. Sci., 16, 809 (1981)
  •  
  • 4. Wei QF, Gao WD, Hou DY, Wang XQ, Appl. Sur. Sci., 125, 123 (2004)
  •  
  • 5. Choi CY, Kim HC, Kim SB, Park PK, Chung YS, J. Korean Fiber Soc., 42, 263 (2004)
  •  
  • 6. Taguchi T, Muraoka Y, Matsuyama H, Kishida A, Akashi M, Biomaterials, 22, 53 (2001)
  •  
  • 7. Miao X, Lim WK, Huang X, Chen Y, Mater. Lett., 59, 4000 (2005)
  •  
  • 8. Helwig E, Sandner B, Gopp U, Vogt F, Wartewig S, Henning S, Biomaterials, 22, 2695 (2001)
  •  
  • 9. Liu Q, de Wijin JR, Bakker D, van Blitterswijk CA, J. Mater. Sci.: Mater. Med., 7, 557 (1996)
  •  
  • 10. Borum-Nicholas L, Wilson OC, Biomaterials, 24, 3671 (2003)
  •  
  • 11. Ikada Y, Jamshidi K, Tsuji H, Hyon SH, Macromolecules, 20, 904 (1987)
  •  
  • 12. Hong ZK, Qiu XY, Sun JR, Deng MX, Chen XS, Jing XB, Polymer, 45(19), 6699 (2004)
  •  
  • 13. Yoon SY, Lee JK, Chung I, Park SS, Lee WK, Macromol. Symp., 249, 431 (2007)
  •  
  • 14. Kim O, Seo K, Polym.(Korea), 30(2), 135 (2006)
  •  
  • 15. Lee BC, Kang DW, Polym.(Korea), 31(1), 80 (2007)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2009; 33(1): 13-18

    Published online Jan 25, 2009

  • Received on Jun 3, 2008
  • Accepted on Oct 21, 2008