Article
  • Synthesis of High Molecular Weight Poly(Hexafluoropropylene Oxide) by Anionic Polymerization
  • Lee SG, Ha JW, Park IJ, Lee SB, Lee JD
  • 음이온 중합에 의한 고분자량 헥사플루오르프로필렌 옥사이드 중합체의 합성
  • 이상구, 하종욱, 박인준, 이수복, 이종대
Abstract
Chain propagation and chain transfer in anionic polymerization of hexafluoropropylene oxide were investigated under various reaction conditions such as the stabilization of reaction temperature, the amount of hexafluoropropylene solvent, and the feeding rate of hexafluoropropylene oxide monomer. Anionic initiator for the polymerization was synthesized from cesium fluoride and hexafluoropropylene oxide in tetraethyleneglycol dimethylether. It was possible to obtain a high molecular weight poly(HFPO)(Mw 14800) using the anionic initiator in conditions of stabilized reaction temperature, and optimized addition of solvent and monomer feeding (HFP/initiator mole ratio=31.5 and HFPO feeding rate=11.67 g/hr). Otherwise, chain transfer reaction in anionic polymerization was increased. From the results of molecular weight in various reaction conditions, it was found that chain propagation and chain transfer in anionic polymerization of HFPO were very sensitive to reaction conditions.

반응온도의 안정화, 용매 hexafluoropropylene(HFP) 투입량, 그리고 단량체 hexafluoropropylene oxide(HFPO)의 투입속도와 같은 반응조건이 HFPO 음이온 중합의 사슬확장과 사슬이동에 미치는 영향에 대해 연구하였다. Cesium fluoride(CsF)와 tetraethyleneglycol dimethylether(TG)를 사용하여 합성된 음이온 개시제를 이용한 HFPO의 음이온 중합반응에서, 안정적인 반응온도 -35∼-36 ℃, 개시제 투입량에 대한 HFP 투입 몰비 31.5, 그리고 HFPO 투입속도 11.67 g/hr의 반응조건으로부터 평균분자량 14800의 고분자량 poly(HFPO)를 얻을 수 있었다. 반면, 불안정한 반응온도, 최적화되지 않은 용매의 투입량과 HFPO 투입속도는 중합물의 사슬이동을 증가시켜 중합체가 원활하게 성장하지 못하였다. 결론적으로, HFPO 음이온 중합반응에서의 사슬확장과 사슬이동은 반응온도의 안정화, 용매의 투입량과 단량체의 투입속도에 매우 민감하게 영향을 받고 있음을 알 수 있었다.

Keywords: hexafluoropropylene oxide; anionic polymerization; hexafluoropropylene oxide alkoxide

References
  • 1. Mate CM, Tribol. Lett., 4, 119 (1998)
  •  
  • 2. Bhushan B, Trans. ASME. J. Tribol., 114, 420 (1992)
  •  
  • 3. Laurenson L, Dennis NTM, Newton J, Vacuum, 29, 433 (1979)
  •  
  • 4. Vertes M, Vacuum, 44, 769 (1993)
  •  
  • 5. Jones WR, Snyder CE, ASLE Trans., 23, 253 (1980)
  •  
  • 6. Fusaro RL, Lubric. Eng., 51, 182 (1995)
  •  
  • 7. Zaretsky EV, Tribol. Int., 23, 75 (1990)
  •  
  • 8. Del Pesco TWin Synthetic Lubricants and High-Performance Functional Liquids, R. L. Shubkin, Editor, Marcel Dekker, New York, p 145 (1993)
  •  
  • 9. Bhushan B, Wear, 136, 169 (1990)
  •  
  • 10. Sianesi D, Zamboni V, Fontanelli R, Binaghi M, Wear, 18, 85 (1971)
  •  
  • 11. Ohsaka Y, Petrotech(Tokyo), 8, 840 (1985)
  •  
  • 12. Dupont, G.B.Patent 904,877 (1962)
  •  
  • 13. Gumprecht WH, ASLE Trans., 9, 24 (1966)
  •  
  • 14. Gumprecht WHin Proceedings of the Fourth International Symposium on Fluorine Chemistry (1967)
  •  
  • 15. Moore EPU.S.Patent 3,322,826 (1967)
  •  
  • 16. Hill JT, J. Macromol. Sci. Chem., A8, 499 (1974)
  •  
  • 17. Arbogast FLU.S. Patent 3,412,148 (1968)
  •  
  • 18. Eleuterio HS, J. Macromol. Sci. Chem., A6, 1027 (1972)
  •  
  • 19. Pacansky J, Waltman RJ, Wang C, J. Fluorine Chem., 32, 283 (1986)
  •  
  • 20. Karis TE, Marchon B, Hopper DA, Siemens RL, J. Fluor. Chem., 118, 81 (2002)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2008; 32(4): 385-389

    Published online Jul 25, 2008

  • Received on Apr 7, 2008
  • Accepted on May 6, 2008