Article
  • Effect of Long Time Physical Aging on Ultra Thin 6FDA-Based Polyimide Films Containing Carboxyl Acid Group
  • Im H, Kim J, Lee H, Kim T
  • Carboxyl Acid Group을 포함한 6FDA-Based 폴리이미드 박막필름의 장시간 에이징에 따른 특성변화
  • 임현구, 김주헌, 이혁수, 김태민
Abstract
The goal of this study is to investigate the effect of molecular structure modifications on the kinetics of physical aging of thin films formed from 6FDA-based polyimides with time. The permeability for 6FDA-based polyimide thin films containing carboxyl acid groups commonly decreased 20-50% after the isothermal aging and the selectivity gained anywhere from 10% to 30% while the rate of permeability loss on the change of polymer structure showed different reciprocal relationship between 6FDA-6FpDA based polyimides and 6FDA-DAM based polyimides. The Lorenz-Lorentz equation was used to relate changes in refractive index to densification and volume relaxation with aging time. The permeability as a function of aging time fits the expected form P=Ae(-B / f ). The results matched well with the data for different polymer membranes.

장시간에 걸친 에이징이 carboxyl acid group을 포함한 수 백 나노 두께의 6FDA계 폴리이미드 박막에 미치는 영향을 박막의 가스투과도와 굴절률의 변화를 통하여 측정하였다. 에이징 시간에 따른 가스투과도의 변화는 carboxyl acid group을 포함한 박막이 이를 포함하지 않은 박막보다 빠른 투과도 감소와 선택도의 증가를 보였으며, 박막 특성의 정량적 분석을 위해 Lorent-Lorentz 이론을 통하여 volume relaxation을 정량화하였다. 박막의 밀도와 부분자유부피는 에이징 시간의 증가에 따라 지속적인 증가 혹은 감소의 경향을 보였으며, 에이징 시간에 따른 가스투과도와 부분자유부피간의 상관관계를 P=Ae(-B / f )을 통하여 예측할 수 있었으며, 그 결과는 다른 고분자 분리막이 보인 경향과 일치하였다.

Keywords: physical aging; fluorinated polyimide; thin film; refractive index

References
  • 1. Sanders ES, J. Membr. Sci., 37, 63 (1988)
  •  
  • 2. Koros WJ, Story BJ, Jordan SM, O'Brien K, Husk GR, Polym. Eng. Sci., 27, 603 (1987)
  •  
  • 3. Wessling M, Borneman Z, Vandenboomgaard T, Smolders CA, J. Appl. Polym. Sci., 53(11), 1497 (1994)
  •  
  • 4. Coleman MR, Koros WJ, J. Membr. Sci., 50, 285 (1990)
  •  
  • 5. Zhou C, Chung TS, Wang R, Goh SH, J. Appl. Polym. Sci., 92(3), 1758 (2004)
  •  
  • 6. Wind JD, Sirard SM, Paul DR, Green PF, Johnston KP, Koros WJ, Macromolecules, 36(17), 6442 (2003)
  •  
  • 7. Coleman MR, Koros WJ, Macromolecules, 32(9), 3106 (1999)
  •  
  • 8. Bos A, Punt IGM, Wessling M, Strathmann H, Sep. Purif. Technol., 14, 27 (1998)
  •  
  • 9. Kim JH, Koros WJ, Paul DR, Polymer, 47(9), 3094 (2006)
  •  
  • 10. Tsay FD, Gupta A, J. Polym. Sci. B: Polym. Phys., 25, 855 (1987)
  •  
  • 11. Roe RJ, Curro JJ, Macromolecules, 16, 428 (1983)
  •  
  • 12. Royal JS, Torkelson JM, Macromolecules, 25, 4792 (1992)
  •  
  • 13. Robertson CG, Wilkes GL, Polymer, 39(11), 2129 (1998)
  •  
  • 14. Pfromm PH, Koros WJ, Polymer, 36(12), 2379 (1995)
  •  
  • 15. McCaig MS, Paul DR, Barlow JW, Polymer, 41(2), 639 (2000)
  •  
  • 16. McCaig MS, Paul DR, Polymer, 41(2), 629 (2000)
  •  
  • 17. Huang Y, Paul DR, Polymer, 45(25), 8377 (2004)
  •  
  • 18. Huang Y, Paul DR, J. Membr. Sci., 244(1-2), 167 (2004)
  •  
  • 19. Krevelen DWV, Chermin HAG, Ingenieur, 62, 65 (1950)
  •  
  • 20. Kim JH, Jang J, Zin WC, Langmuir, 16(9), 4064 (2000)
  •  
  • 21. Keddlie JL, Cory RA, Faraday Discuss, 98, 219 (1994)
  •  
  • 22. Park JY, Paul DR, J. Membr. Sci., 125(1), 23 (1997)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2007; 31(4): 335-342

    Published online Jul 25, 2007

  • Received on Apr 17, 2007
  • Accepted on Jun 26, 2007