Article
  • Microstructure-Sound Absorption Relationships of Polyurethane Foam and Application of Low Monol Polyol
  • Lee BY, Kim SY, Lee KH, Jin BS
  • 폴리우레탄 폼의 미세구조와 흡음 관계 및 Low Monol 폴리올의 응용
  • 이부연, 김소연, 이광희, 진병석
Abstract
The material factors influencing the sound absorption of the polyurethane foam were investigated with FT-IR, small-angle X-ray scattering (SAXS), and dynamic mechanical thermal analyzer (DMTA). The measurements were performed using the samples which had a similar cell structure but different absorption coefficients. It was found that the ability of the sound absorption of the polyurethane foams was closely related to the damping behavior over the transition range. In order to confirm the use of the low monol polyol (LMP) in high-performance applications, the polyurethanes based on LMP and polypropylene oxide polyol (PPG) were prepared by the solution polymerization method. The microstructure and the physical properties of these polyurethanes were compared. The PPG-based polyurethane showed a higher level of the phase-separated structure because the considerable amount of monol presented in PPG made a contribution to the increased chain mobility. However the short chains formed due to the monol species deteriorated the damping property. As a result, the LMP-based polyurethane showed the superior damping behavior as compared with the PPG-based one.

셀 구조는 유사하나 흡음성능에서 차이가 있는 시편을 사용하여 폴리우레탄 폼의 흡음성능을 예측할 수 있는 인자들을 FT-IR, 소각 X-선 산란(SAXS)과 dynamic mechanical thermal analyzer(DMTA)로 조사하였다. 그 결과, 전이영역에서의 damping 특성이 흡음성능과 가장 밀접한 관계가 있음을 알 수 있었다. 최근 개발된 low monol 폴리올(LMP)을 흡음용 폴리우레탄 폼에 적용할 수 있는가를 검토하기 위하여 LMP와 산화프로필렌계 폴리올(PPG)을 기본으로 한 폴리우레탄을 용액중합법으로 제조하고, 이들의 내부구조와 물리적 성질을 상호 비교하였다. Monol 성분을 다량 포함하는 PPG는 LMP에 비하여 분자 유동성이 커서 보다 발달된 상분리 구조를 보여주었다. 그러나 monol 성분에 의해 고분자량으로 성장하지 못한 분자사슬의 비효율적인 damping 거동으로 인하여 LMP의 경우가 PPG에 비하여 전이영역이 넓고, damping 양도 훨씬 더 컸다.

Keywords: polyurethane; low monol polyol; damping

References
  • 1. Deng R, Davies P, Bajaj AK, J. Sound. Vib., 262, 391 (2003)
  •  
  • 2. Song KC, Lee SM, Lee DH, Polym.(Korea), 25(5), 679 (2001)
  •  
  • 3. Song KC, Lee SM, Lee DH, Polym.(Korea), 26(2), 218 (2002)
  •  
  • 4. Lu TJ, Hess A, Ashby MF, J. Appl. Phys., 85, 7528 (1999)
  •  
  • 5. Han F, Seiffert G, Zhao Y, Gibbs B, J. Phys. D-Appl. Phys., 36, 294 (2003)
  •  
  • 6. Han MJ, Kwon YH, Polym.(Korea), 2, 204 (1978)
  •  
  • 7. Yoo SR, Lee HS, Seo SW, Polym.(Korea), 21(3), 467 (1997)
  •  
  • 8. Imai Y, Asano T, J. Appl. Polym. Sci., 27, 183 (1982)
  •  
  • 9. Dounis DV, Wilkes GL, Polymer, 38(11), 2819 (1997)
  •  
  • 10. Seneker SD, Barksby N, Lawrey BD, Polyurethanes World Congress 1998, 195 (1998)
  •  
  • 11. Toyota Y, Hasegawa N, Wada H, Horie A, Hatano S, Sasaki T, Polyurethanes World Congress 1997, 421 (1997)
  •  
  • 12. Barksby N, Allen GL, Polyurethanes World Congress 1993, 445 (1993)
  •  
  • 13. Gisselfalt K, Edberg B, Flodin P, Biomacromolecules, 3, 951 (2002)
  •  
  • 14. Jiejun W, Chenggong L, Dianbin W, Manchang G, Compos. Sci. Technol., 63, 569 (2003)
  •  
  • 15. Krevelen DW, Properties of PolymersElsevier, New York (1990)
  •  
  • 16. Gisselfalt K, Helgee B, Macromol. Mater. Eng., 288, 265 (2003)
  •  
  • 17. Ahn TO, Lee SY, Lee SW, Jeong HM, Polym.(Korea), 14(5), 497 (1990)
  •  
  • 18. Lee TY, Lee HS, Seo SW, Polym. Sci. Technol., 10(5), 597 (1999)
  •  
  • 19. Hu WC, Koberstein JT, J. Polym. Sci. B: Polym. Phys., 32(3), 437 (1994)
  •  
  • 20. Lee KK, Farris RJ, J. Appl. Polym. Sci., 29, 2529 (1984)
  •  
  • 21. Koberstein JT, Russell TP, Macromolecules, 19, 714 (1986)
  •  
  • 22. Li Y, Gao T, Liu J, Linliu K, Desper CR, Chu B, Macromolecules, 25, 7365 (1992)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2007; 31(4): 289-296

    Published online Jul 25, 2007

  • Received on Jan 22, 2007
  • Accepted on Jun 26, 2007