Article
  • Degradation Behavior of Medical Resorbable Composite Materials Interposed in the Poly(glycolic acid)
  • Lee CW
  • Poly(glycolic acid)를 심선에 지닌 의료용 흡수성 복합재료의 생분해 거동
  • 이찬우
Abstract
The purpose of the study is to apply composites of poly(glycolic acid)(PGA) with [poly(R)- 3-hydroxybutyrate](P3HB) or poly (butylenes succinate-co-L-lactate)(PBSL) as medical resorbable composite materials with the complement of hydrolysis rate of each component. As a result, it was confirmed that the PBSL/PGA and P3HB/PGA composite fiber were hydrolyzed in phosphate buffer solution. Also, it has been revealed that the degradation of PBSL/PGA are accelerated due to PGA producing glycolic acid which can act as a catalyst. In addition, the hydrolysis of PBSL/PGA was found to be accelerated by the presence of lipase PS. When the PBSL/PGA composite fiber was placed in the air, not much hydrolysis has proceeded. Also, it was confirmed that the P3HB/PGA composite fiber maintained proper tensile strength in the air. Therefore, these complex fibers can be adapted to use as environmentally suitable, medically absorbable composite materials.

Poly(glycolic acid)(PGA)와 poly[(R)-3-hydroxybutyrate](P3HB) 및 poly(butylenes succinate-co-L-lactate)(PBSL) 복합재료를 체내에서 서로 다른 가수분해속도를 보완하여 저가의 의료용 흡수성 복합재료로 응용하고자 연구하였다. 그 결과 PBSL/PGA와 P3HB/PGA 복합섬유는 인산염 완충용액 중에서 가수분해되는 것이 확인되었으며, PBSL/PGA 복합섬유는 PGA의 분해에 의해 발생된 glycolic acid에 의해 PBSL의 분해가 촉진되는 메카니즘이 확인되었다. PBSL/PGA 복합섬유는 lipase PS가 존재함에 의해 상당히 빠른 가수분해가 발생하는 것이 확인되었으며, 대기중에서는 거의 가수분해가 발생되지 않는 것을 알 수 있었다. P3HB/PGA 복합섬유 역시 대기중에서 적당한 인장강도를 유지하고 있는 것이 확인된 것으로 보아 본 연구를 통하여 이들 복합섬유는 의료용 흡수성 복합재료와 환경 적합재료로서 응용이 가능할 것으로 판단된다.

Keywords: phosphate buffer; decomposition; hydrolysis; degradation; composite fibrous; medical resorbable composite materials

References
  • 1. Kitao T, Kimura Y, Konishi T, Araki M, Sugiyama Y, Ohya S, Koubunnshi Ronbunshu, 41, 717 (1984)
  •  
  • 2. Furuhashi Y, Ito H, Kikutani T, Yamamoto T, Kimizu M, Sen-I Gakkaishi, 53, 356 (1997)
  •  
  • 3. Nakayama K, Saito T, Fukui T, Shirakura Y, Tomita K, Biochimica et Biophysica Acta, 827, 63 (1985)
  •  
  • 4. Tanio T, Fukui T, Shirakura Y, Saito T, Tomita K, Kaiho T, Masamune S, Eur. J. Biochem., 124, 71 (1982)
  •  
  • 5. Mukai K, Yamada K, Doi Y, Int. J. Biol. Macromol., 14, 235 (1992)
  •  
  • 6. Tomasi G, Scandola M, Briese BH, Jendrossek D, Macromolecules, 29(2), 507 (1996)
  •  
  • 7. Hocking PJ, Marchessault RH, Timmins MR, Lenz RW, Fuller RC, Macromolecules, 29(7), 2472 (1996)
  •  
  • 8. Iwata T, Doi Y, Kasuya K, Inoue Y, Macromolecules, 30(4), 833 (1997)
  •  
  • 9. Holmes PA, Phys. Technol., 16, 32 (1985)
  •  
  • 10. Doi Y, Kunioka M, Nakamura Y, Soga K, Macromolecules, 21, 2722 (1988)
  •  
  • 11. Koyama N, Doi Y, Polymer, 38(7), 1589 (1997)
  •  
  • 12. Finelli L, Scandola M, Sadocco P, Macromol. Chem. Phys., 199, 695 (1998)
  •  
  • 13. Maekawa M, Pearce R, Marchessault RH, Manley RSJ, Polymer, 40(6), 1501 (1999)
  •  
  • 14. Motizuki M, Murase S, Inagaki M, Kanmuri Y, Kudo K, Sen-I Gakkaishi, 53, 348 (1997)
  •  
  • 15. Lee CW, Polym.(Korea), 31(3), 228 (2007)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2007; 31(3): 233-238

    Published online May 25, 2007

  • Received on Feb 28, 2007
  • Accepted on May 23, 2007