Article
  • Synthesis of Sulfonated POF-g-Styrene Ion Exchange Fibers by Radiation-Induced Polymerization and Properties of Ammonia Adsorption
  • Cho IH, Baek K, Lee CS, Nho YC, Yoon SK, Hwang TS
  • 방사선 중합에 의한 설폰화 POF-g-Styrene 이온교환 섬유의 합성 및 암모니아 흡착
  • 조인희, 백기완, 이창수, 노영창, 윤수경, 황택성
Abstract
In this study, the sulfonated ion exchange fiber was synthesized by Co60 γ-ray radiation-induced graft copolymerization. Degree of grafting(DG) increased with increasing the total dose and showed the highest value at 50 v/v% styrene monomer. And also, the degree of sulfonation(DS) increased with increasing the DG and reaction temperature. DS showed the maximum value at 20 min. Ion exchange capacity and swelling ratio of ion exchange fibers increased with increasing the DS and their maximum values were 4.76 meq/g and 23.5%, respectively. Ammonia adsorption increased as increasing the ammonia concentration and ion exchange capacity and remained constant over 10 cycles.

본 연구는 Co60 γ-ray 선원을 이용한 그래프트 공중합 방법으로 설폰형 이온교환 섬유를 합성하였다. 공중합체 합성 시 스티렌 단량체의 농도가 50 v/v%에서 그래프트율이 가장 높게 나타났으며, 총 조사선량이 증가할수록 그래프트율은 증가하였다. 그래프트율과 반응온도가 증가함에 따라 설폰화율은 증가하였으며, 반응시간 20분에서 가장 높았다. 이온교환 섬유의 이온교환 용량과 함수율은 설폰화율이 증가함에 따라 모두 증가하였으며, 각각 최대 4.76 meq/g, 23.5%이었다. 암모니아 흡착량은 이온교환 용량 및 암모니아 농도가 증가함에 따라 증가하였으며, 10회 이상 반복 사용하여도 암모니아 흡착량은 변하지 않았다.

Keywords: γ-ray radiation copolymerization; ion exchange fiber; ion exchange capacity; degree of sulfonation(DS); degree of grafting(DG); ammonia adsorption

References
  • 1. Yoshizawa TPerformance test of adsorbents to trap harmful gases to silicone wafer(No.2), Proceedings of the 11th Annual Tech., Meeting on Air Cleaning and Contamination Control, 165∼168, April 21∼22 (1992)
  •  
  • 2. Hori T, Saito K, Frusaki S, Sugo T, Okamoto J, Chem. Soc. Japan, 12, 1792 (1986)
  •  
  • 3. Tsuneda S, Saito K, Furusaki S, J. Membr. Sci., 58, 221 (1991)
  •  
  • 4. Okamoto J, Sugo T, Katakai A, Omichi H, J. Polym. Sci., 30, 1219 (1992)
  •  
  • 5. Chen J, Yang L, Wu M, Xi Q, He S, Li Y, Nho YC, Radiat. Phys. Chem., 59, 313 (2000)
  •  
  • 6. Hegazy ESA, Kamal H, Maziad N, Dessouki AM, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 151, 386 (1999)
  •  
  • 7. Sugo T, Saito K, Membrane, 71, 58 (1990)
  •  
  • 8. Cho IH, Kwak NS, Kang PH, Nho YC, Hwang TS, Polym.(Korea), 30(3), 217 (2006)
  •  
  • 9. Ulbricht M, React. Funct. Polym., 31(2), 165 (1996)
  •  
  • 10. Ma HM, Davis RH, Bowman CN, Polymer, 42(20), 8333 (2001)
  •  
  • 11. Borcherding H, Hicke HG, Jorcke D, Ulbricht M, Desalination, 149(1-3), 297 (2002)
  •  
  • 12. Park JS, Nho YC, Polym.(Korea), 22(1), 47 (1998)
  •  
  • 13. Na CK, Park HJ, Kim SY, J. Korean Society of Waste Management, 19, 883 (2002)
  •  
  • 14. Hwang TS, Lee JH, Lee MJ, Polym.(Korea), 25(4), 451 (2001)
  •  
  • 15. Trommsdroff E, Kohle H, Lagally P, Macromol. Chem., 1, 169 (1948)
  •  
  • 16. Kim JB, Song JH, Yeon KH, Moon SHProceedings of KSEE, KAIST, p.1481, May 1-3 (2003)
  •  
  • 17. Park JS, Nho YC, Hwang TS, Polym.(Korea), 21(4), 701 (1997)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2007; 31(1): 1-7

    Published online Jan 25, 2007

  • Received on Jun 26, 2006
  • Accepted on Dec 31, 2006