Communication
  • Characteristics of Electrospun Poly(methyl methacrylate) Nanofibers Embedding Multi-Walled Carbon Nanotubes(MWNTs)
  • Kim DO, Lee DH, Yoon SS, Lee SA, Nam JD
  • 다중벽 탄소 나노튜브가 분산된 Poly(methyl methacrylate) 고분자 용액의 전기방사연구
  • 김동욱, 이대회, 윤정식, 이선애, 남재도
Abstract
An electrospinning process was used to fabricate poly(methyl methacrylate) (PMMA) nanofibers embedding multi-walled carbon nanotubes (MWNTs). SEM images showed that the nanofiber surface and structural morphology depended on solvent types (dimethyl formamide, chloroform and toluene) and carbon nanotube contents (0.5 and 3.0 wt%). Nanofiber alignments could be controlled by adjusting the electrodes configuration at collector sites. Relationship between carbon nanotube and PMMA nanofiber was studied with radius of gyration of polymer chain and carbon nanotube sizes. As the carbon nanotube content ratio increased, the number of bead increased.

다중벽 탄소 나노튜브(multi-walled carbon nanotubes, MWNTs)를 포함하고 있는 poly(methyl methacrylate)(PMMA) 나노섬유를 전기방사법에 의해 제작하였다. 주사 전자 현미경을 통하여 용매의 종류(dimethyl formamide, chloroform and toluene)와 탄소 나노튜브의 함량(0.5 and 3.0 wt%)에 의해 나노섬유 표면의 형상과 탄소 나노튜브와 나노섬유의 구조가 영향을 받았다. 집적판의 전극 모양을 조절함으로써 나노 섬유의 정렬이 가능하였다. 고분자 사슬의 회전 반경과 탄소 나노튜브의 크기의 비교를 통하여 PMMA 나노섬유와 탄소 나노튜브의 관계를 정리하였다. 탄소 나노튜브 투입량이 증가함에 따라 고분자 비드가 증가하였다.

Keywords: electrospinning; carbon nanotube; dispersion; alignment; radius of gyration

References
  • 1. Formhals AUS Patent 1,975,504 (1934)
  •  
  • 2. Martin GE, Cockshott ID, Fields JTUS Patent 4,044,404 (1977)
  •  
  • 3. Iijima S, Nature, 354, 56 (1991)
  •  
  • 4. Rinzler AG, Hafner JH, Nikolaev P, Lou L, Kim SG, Tomanek D, Nordlander P, Colbert DT, Smalley RE, Science, 269(5230), 1550 (1995)
  •  
  • 5. Deheer WA, Chatelain A, Ugarte D, Science, 270(5239), 1179 (1995)
  •  
  • 6. Collins PG, Zettl A, Bando H, Thess A, Smalley RE, Science, 278(5335), 100 (1997)
  •  
  • 7. Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, McCarthy B, Maier S, Strevens A, Adv. Mater., 10, 1091 (1988)
  •  
  • 8. Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI, Macromolecules, 37(24), 9048 (2004)
  •  
  • 9. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG, Nano Lett., 3, 269 (2003)
  •  
  • 10. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS, Macromol. Rapid Commun., 24, 1070 (2003)
  •  
  • 11. Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M, J. Phys. Chem. B, 104(38), 8911 (2000)
  •  
  • 12. Zhou Z, Yan D, Macromol. Theory Simul., 6, 597 (1997)
  •  
  • 13. Megelski S, Stephens JS, Chase DB, Rabolt JF, Macromolecules, 35(22), 8456 (2002)
  •  
  • 14. Yamamoto K, Akita S, Nakayama Y, Jpn. J. Appl. Phys., 35, L917 (1996)
  •  
  • 15. Kumar MS, Chem. Phys. Lett., 383, 235 (2004)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2006; 30(1): 90-94

    Published online Jan 25, 2006

  • Received on Nov 4, 2005
  • Accepted on Dec 30, 2005