Article
  • Preparation and Electrochemical Characteristics of Polymer Electrolyte Based on MCM-41/Poly(ethylene oxide) Composites
  • Kim S, Kang JY, Lee SG, Lee JR, Park SJ
  • MCM-41/Poly(ethylene oxide) 복합체로 구성된 고분자 전해질의 제조와 전기화학적 특성
  • 김석, 강진영, 이성구, 이재락, 박수진
Abstract
In this work, the solid polymer electrolyte (SPE) composites, which are composed of poly(ethylene oxide) (PEO), mesoporous mobil crystalline material-41 (MCM-41), and lithium salt, are prepared in order to investigate the influence of MCM-41 contents on the ionic conductivity of the composites. The crystallinity of the SPE composites was evaluated using differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The ionic conductivity of the SPE composites was measured by the frequency response analyzer (FRA). As a result, the addition of MCM-41 into the polymeric mixture prohibited the growth of PEO crystalline domain due to the mesoporous structures of the MCM-41. The P(EO)16LiClO4/MCM-41 electrolytes show an increased ion conductivity as a function of MCM-41 content up to 8 wt% and a slightly decreased conductivity over 8 wt%. These ion conductivity characteristics are dependent on a change of polymer crystallinity in the presence of MCM-41 system.

본 연구에서는 mobil crystalline material-41(MCM-41)의 함량 변화에 따른 고체 고분자 전해질(solid polymer electrolyte, SPE)의 이온전도도의 변화를 고찰하기 위하여, poly(ethylene oxide)(PEO), 메조포러스 기공 구조를 가지는 MCM-41 분자체, 그리고 리튬염을 이용하여 SPE를 제조하였다. SPE의 결정화도는 X-선 회절분석(XRD) 및 시차주사열량계(DSC)를 통하여 살펴보았으며, 주파수반응분석(FRA)으로 이온전도도를 측정하여 이온 전도거동을 고찰하였다. 그 결과, MCM-41을 고분자 혼합물에 첨가함에 따라 PEO의 결정성 영역의 성장을 억제할 수 있었으며, 이는 MCM-41이 메조포러스한 구조를 가지고 있기 때문이다. 또한, P(EO)16LiClO4/MCM-41 전해질 복합체의 이온전도도는 8 wt%의 MCM-41을 첨가한 경우 가장 큰 이온전도도를 가지며, 8 wt% 이상에서는 다소 감소된 이온전도도를 가짐을 관찰할 수 있었다. 이러한 이온전도도의 특성은 MCM-41의 첨가에 따른 고분자의 결정화도 변화와 밀접한 관계를 맺고 있다.

Keywords: solid polymer electrolyte; ionic conductivity; crystallinity; mobil crystalline material-41

References
  • 1. Chawla KKComposite Materials, Science and Engineering, Springer, New York (1987)
  •  
  • 2. Ribeiro R, Silva GG, Mohallem NDS, Electrochim. Acta, 46(10-11), 1679 (2001)
  •  
  • 3. Park SJ, Jun BR, J. Colloid Interface Sci., 284(1), 204 (2005)
  •  
  • 4. Park SJ, Seo MK, Ma TJ, Lee DR, J. Colloid Interface Sci., 252(1), 249 (2002)
  •  
  • 5. Callum JRMPolymer Electrolyte Reviews, Elsevier, Amsterdam (1987)
  •  
  • 6. Owen JR, Lasker AL, Chandra SSuperionic Solids and Solid State Electrolytes, Academic Press, New York (1989)
  •  
  • 7. Scrosati BApplication of Electroactive Polymer, Chapman & Hall, London (1993)
  •  
  • 8. Doeff MM, Georen P, Qiao J, Kerr J, De Jonghe LC, J. Electrochem. Soc., 146(6), 2024 (1999)
  •  
  • 9. Reddy MJ, Chu PP, J. Power Sources, 109(2), 340 (2002)
  •  
  • 10. Croce F, Scrosati B, J. Power Sources, 43, 43 (1993)
  •  
  • 11. Leo CJ, Rao GVS, Chowdari BVR, Solid State Ion., 148(1-2), 159 (2002)
  •  
  • 12. Appetecchi GB, Croce F, Mastragostino M, Scrosati B, Soavi F, Zanelli A, J. Electrochem. Soc., 145(12), 4133 (1998)
  •  
  • 13. Bujdak J, Hackett E, Gianndis EP, Chem. Mater., 12, 2168 (2000)
  •  
  • 14. Dag O, Varma A, Ozin GA, Kresge CT, J. Mater. Chem., 9, 1475 (1999)
  •  
  • 15. Appetecchi GB, Scaccia S, Passerini S, J. Electrochem. Soc., 147(12), 4448 (2000)
  •  
  • 16. Di Noto V, Fauri M, Vittadello M, Lavina S, Biscazzo S, Electrochim. Acta, 46(10-11), 1587 (2001)
  •  
  • 17. Lee HS, Yang XQ, Mcbreen J, Xu ZS, Skotheim TA, Okamoto Y, J. Electrochem. Soc., 141(4), 886 (1994)
  •  
  • 18. Prosini PP, Fujieda T, Passerini S, Shikano M, Sakai T, Electrochem. Commun., 2, 44 (2000)
  •  
  • 19. Jacob MME, Arof AK, Electrochim. Acta, 45(10), 1701 (2000)
  •  
  • 20. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R, J. Phys. Chem. B, 103(48), 10632 (1999)
  •  
  • 21. Golodnitsky D, Peled E, Electrochim. Acta, 45(8-9), 1431 (2000)
  •  
  • 22. Strauss E, Golodnitsky D, Ardel G, Peled E, Electrochim. Acta, 43(10-11), 1315 (1998)
  •  
  • 23. Dai Y, Wang Y, Greenbaum SG, Bajue SA, Golodnitsky D, Ardel G, Strauss E, Peled E, Electrochim. Acta, 43(10-11), 1557 (1998)
  •  
  • 24. Golodnitsky D, Ardel G, Strauss E, Peled E, Lareah Y, Rosenberg Y, J. Electrochem. Soc., 144(10), 3484 (1997)
  •  
  • 25. Appetecchi GB, Croce F, Persi L, Ronci F, Scrosati B, Electrochim. Acta, 45(8-9), 1481 (2000)
  •  
  • 26. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
  •  
  • 27. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL, J. Am. Chem. Soc., 114, 10834 (1992)
  •  
  • 28. Decyk P, Trejda M, Ziolek M, C. R. Chim., 8, 635 (2005)
  •  
  • 29. Kim JM, Kwak JH, Jun SN, Ryoo R, J. Phys. Chem., 199, 16742 (1995)
  •  
  • 30. Sreekanth T, Reddy MJ, Subramanyam S, Subba UV, Mater. Sci. Eng. B, 64, 107 (1999)
  •  
  • 31. Reddy MJ, Chu PP, Electrochim. Acta, 47(8), 1189 (2002)
  •  
  • 32. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA, Electrochim. Acta, 46(16), 2457 (2001)
  •  
  • 33. Wen ZY, Itoh T, Ikeda M, Hirata N, Kubo M, Yamamoto O, J. Power Sources, 90(1), 20 (2000)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2005; 29(4): 403-407

    Published online Jul 25, 2005

  • Received on Apr 26, 2005
  • Accepted on Jun 16, 2005