Article
  • Properties and Performance of Electroactive Acrylic Copolymer-Platinum Composite Modified with Sodium Montmorillonite
  • Jeong JM, Kim BC, La YS
  • Sodium Montmorillonite로 개질한 아크릴계 IPMC의 물성과 전기 구동 특성
  • 정한모, 김병춘, 라영수
Abstract
Fluoroalkyl methacrylate and acrylic acid were bulk radical copolymerized in the presence of pure sodium montmorillonite or macromer intercalated sodium montmorillonite to get a fluorinated acrylic ionomer/sodium montmorillonite composite, and their physical properties, such as X-ray diffraction pattern, tensile properties, and water uptake, were examined. These composites were used to preparean ionic acrylic polymer-platinum composite (IPMC). The current and deformation responses of these IPMCs by external voltage applied across the platinum electrodes deposited on both sides of IPMC showed that the cation migration from anode to cathode was suppressed in the presence of sodium montmorillonite, causing reduced current and deformation.

Sodium montmorillonite 혹은 sodium montmorillonite가 삽입된 macromer의 존재 하에서 fluoroalkyl methacrylate와 아크릴산을 라디칼 공중합하여 불소화 아크릴계 이온성 고분자/sodium montmorillontie 복합재료를 제조하고, 이들의 X-선 회절 특성, 인장물성, 수분흡수율 등 물리적 성질을 조사하였다. 또, 이들을 이용하여 이온성 고분자-백금 복합재료(IPMC)를 제조하여 수 볼트의 외부 전위에 의한 전류 흐름 및 변위 거동을 측정한 결과, sodium montmorillonite가 이온의 이동을 방해하여 전류 및 변위량의 감소를 초래함을 관찰하였다.

Keywords: ionic polymer-metal composite(IPMC); fluorinated acrylic ionomer; electroactive; sodium montmorillonite; composite

References
  • 1. Bar-Cohen Y(Editor), Electroactive Polymer(EAP) Actuators as Artificial Muscles, SPIE Press, Washington (2001)
  •  
  • 2. Watanabe M, Suzuki M, Hirako Y, Shirai H, Hirai T, J. Appl. Polym. Sci., 79(6), 1121 (2001)
  •  
  • 3. Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H, Polym. J., 27, 436 (1995)
  •  
  • 4. Shahinpoor M, Kim KJ, Smart Mater. Struct., 10, 819 (2001)
  •  
  • 5. Abe Y, Mochizuki A, Kawashima T, Yamashita S, Asaka K, Oguro K, Polym. Adv. Technol., 9, 520 (1998)
  •  
  • 6. Nemat-Nasser S, Li JY, J. Appl. Phys., 87, 3321 (2000)
  •  
  • 7. Li JY, Nemat-Nasser S, Mech. Mater., 32, 303 (2000)
  •  
  • 8. Heitnerwirguin C, J. Membr. Sci., 120(1), 1 (1996)
  •  
  • 9. Kim KJ, Shahinpoor M, Polymer, 43(3), 797 (2002)
  •  
  • 10. Jeong HM, Woo SM, Kim HS, Kim BK, Bang JH, Lee S, Mun MS, Macromol. Res., 12(6), 593 (2004)
  •  
  • 11. Oguro K, Fujiwara N, Asaka K, Onishi K, Sewa S, Proc. SPIE-Int. Soc. Opt. Eng., 3669, 64 (1999)
  •  
  • 12. Holliday L(Editor), Ionic Polymers, Wiley, New York (1975)
  •  
  • 13. Lvov Y, Ariga K, Ichinose I, Kunitake T, Langmuir, 12(12), 3038 (1996)
  •  
  • 14. Vaia RA, Sauer BB, Tse OK, Giannelis EP, J. Polym. Sci. B: Polym. Phys., 35(1), 59 (1997)
  •  
  • 15. Aranda P, Ruiz-Hitzky E, Chem. Mater., 4, 1395 (1992)
  •  
  • 16. Wu J, Lerner MM, Chem. Mater., 5, 835 (1993)
  •  
  • 17. Rashid T, Shahimpoor M, Proc. SPIE-Int. Soc. Opt. Eng., 3669, 289 (1999)
  •  
  • 18. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, J. Appl. Polym. Sci., 49, 1259 (1993)
  •  
  • 19. Nemat-Nasser S, Li JY, J. Appl. Phys., 87, 3321 (2000)
  •  
  • 20. Xie G, Okada T, J. Electrochem. Soc., 142(9), 3057 (1995)
  •  
  • 21. LeBaron PC, Wang Z, Pinnavaia TJ, Appl. Clay Sci., 15, 11 (1999)
  •  
  • 22. Jeong HM, Jang KH, Cho K, J. Macromol. Sci.-Phys., B42, 1249 (2003)
  •  
  • 23. Kim KY, Lim HJ, Park SM, Lee SJ, Polym.(Korea), 27(4), 377 (2003)
  •  
  • 24. Xu M, Choi YS, Wang KH, Kim JH, Chung IJ, Macromol. Res., 11(6), 410 (2003)
  •  
  • 25. Lee JE, Kim HJ, Polym.(Korea), 29(2), 177 (2005)
  •  
  • 26. Cho MS, Choi SH, Nam JD, Lee Y, Polym.(Korea), 28(6), 551 (2004)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2005; 29(4): 380-384

    Published online Jul 25, 2005

  • Received on Mar 11, 2005
  • Accepted on Jun 7, 2005