Article
  • Effects of Physical Properties on Waterborne Polyurethane with Poly(tetramethylene glycol) (PTMG) and Polycaprolactone (PCL) Contents
  • Yang YK, Kwak NS, Hwang TS
  • 폴리(테트라메틸렌 글리콜)(PTMG)/폴리카프로락톤)(PCL) 폴리올의 혼합비가 수분산계 폴리우레탄의 물성에 미치는 영향
  • 양윤규, 곽노석, 황택성
Abstract
In this study, waterborne polyurethanes were synthesized with poly(tetramethylene glycol) (PTMG), polycarprolactone PCL), dimethylol propionic acid (DMPA) and different molar ratio of chain extender. Particle size, polydispersity, thermal and mechanical properties of waterborne polyurethane were investigated. The particle size of waterborne polyurethane was in the range of 5∼200 nm and decreased with increasing the amounts of PCL and chain extender. Glass transition temperatures (Tg) were in the range of -70∼-45 ℃ and increased with as PCL and chian extender (ED) contents increased. The Tg of polyurethane prepared from the mixture showed similar trends as compared with those of in the same values of synthetic polyurethane using PTMG or PCL, respectively. Also, mechanical properties of mixed polyols (PTMG and PCL) were lower than those of PTMG and PCL, respectively.

본 연구에서는 폴리(테트라메틸렌 글리콜)(PTMG), 폴리카프로락톤(PCL) 및 isophron diisocyanate(IPDI)와 dimethylol propionic acid(DMPA)를 이용하여 물에 분산이 가능한 수분산계 폴리우레탄을 제조하였다. 또한, 사슬연장제의 함량을 변화시키면서 입도분석과 기계적 물성 등을 시험하였다. 유화된 폴리우레탄의 입경은 50~200 nm이었으며, PCL과 사슬연장제의 함량이 많을수록 작아졌으며, Tg는 -70~-45 ℃ 범위이고 사슬연장제의 함량이 증가함에 따라 Tg는 다소 상승하였다. PTMG와 PCL을 혼합하여 합성한 폴리우레탄의 Tg는 이들을 각각 사용하여 합성한 Tg와 비슷하게 나타났다. 인장강도는 PCL과 사슬연장제의 함량이 증가할수록 높아졌으며 신율은 낮아졌다. 폴리올을 혼합하였을 경우에는 단독으로 합성한 것보다 전반적으로 기계적 물성이 저하되는 것을 확인하였다.

Keywords: PTMG; PCL; mixed polyols; incompatibility; mechanical properties

References
  • 1. Hepburn CPolyurethane Elastomers, Elsevier, London (1991)
  •  
  • 2. Dieterich D, Prog. Org. Coat., 281 (1981)
  •  
  • 3. Ahn TO, Jung SU, Jeong HM, Lee SW, J. Appl. Polym. Sci., 51(1), 43 (1994)
  •  
  • 4. Oertel GPolyurethane Handbook, Hanser, New York, p 27 (1985)
  •  
  • 5. Santerre JP, Brash JL, J. Appl. Polym. Sci., 52(4), 515 (1994)
  •  
  • 6. Cho CH, Seo HD, Min BH, Cho HK, Noh ST, Choi HG, Cho YH, Kim JH, J. Korean Ind. Eng. Chem., 13(8), 825 (2002)
  •  
  • 7. Chen Y, Chan WC, Polymer, 29, 1995 (1998)
  •  
  • 8. Lorenz O, Hick H, Macromolecules, 72, 115 (1978)
  •  
  • 9. Kim BK, Kim TK, J. Appl. Polym. Sci., 43, 393 (1991)
  •  
  • 10. Tieback RE, Markusch PH, J. Coat. Technol., 16, 39 (1986)
  •  
  • 11. Al-Salah HA, Xiao HX, Malean JA, Frisch KC, J. Polym. Sci. A: Polym. Chem., 26, 160 (1988)
  •  
  • 12. Hepbum CPolyurethane Elastomers, Applied Science Publishers, London and New York, p 50 (1982)
  •  
  • 13. Thapliyal BP, Chandra R, Polym. Int., 24, 7 (1991)
  •  
  • 14. Sanders JH, Frisch KCPolyurethanes Chemistry and Technology, Interscience, New York (1962)
  •  
  • 15. Kang DW, Kim YM, Kweon DK, Polym.(Korea), 22, 4 (1998)
  •  
  • 16. Kim SK, Kim KS, Kim TK, Oh GJ, Elastomer, 35, 281 (2000)
  •  
  • 17. Fambri L, Pegoretti A, Gavazza C, Penati A, J. Appl. Polym. Sci., 81(5), 1216 (2001)
  •  
  • 18. Ahn JB, Cho HK, Jeong CN, Noh ST, J. Korean Ind. Eng. Chem., 8, 2 (1997)
  •  
  • 19. Lee TY, Lee HS, Seo SW, Polym. Sci. Technol., 10(5), 597 (1999)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2005; 29(1): 81-86

    Published online Jan 25, 2005

  • Received on Oct 25, 2004
  • Accepted on Jan 5, 2005