Article
  • Dispersion Polymerization of Acrylamide in Ethanol/Water Media
  • Lee KC, Lee SE, Song BK
  • 에틸 알코올/물 혼합 용매에서 아크릴아미드의 분산 중합
  • 이기창, 이성은, 송봉근
Abstract
Dispersion polymerization of acrylamide was carried out in the media of ethyl alcohol/water mixtures using hydroxypropyl cellulose and ammonium persulfate as steric stabilizer and initiator, respectively. The effects of concentrations of initiator and steric stabilizer, amount of monomer, polymerization temperature, ethyl alcohol/water ratio, and purification of monomer and nitrogen purge on the particle size of the latices and molecular weight of the polymers were investigated. The average particle diameter increased with increasing concentration of initiator, water content in ethyl alcohol/water media, and polymerization temperature, but decreased with monomer and stabilizer concentrations. The viscosity average molecular weight increased with increasing concentrations of monomer, steric stabilizer, and water content in dispersion media, but decreased with initiator concentration and polymerization temperature. The PAM polymers prepared with the purified monomer and the nitrogen purging before the reaction showed the highest the highest molecular weight. In this study, PAM latices of 0.5 ~ 2.4 μm with 20000 ~ 335000 in Mv were prepared and the resulting PAM latices were all dissolved in water instantly.

하이드록시프로필 셀룰로오스와 암모니움 퍼설페이트를 각각 입자 안정제와 개시제로 사용하여 에틸 알코올/물 혼합 분산매에서 아크릴아미드의 분산 중합을 다양한 중합 조건하에서 수행하여 생성되는 poly(acrylamide) (PAM) 라텍스의 평균 입자경, 라텍스 고분자의 점도 평균 분자량, 수용화 정도 등을 관찰하였다. 일반적으로 PAM 라텍스의 평균 입자경은 개시제의 농도, 분산매 중의 물의 농도, 중합 온도가 증가함에 따라 증가하였으나 단량체의 농도, 입자 안정제의 농도는 감소함에 따라 증가하였다. 라텍스 상태로 얻어진 PAM 고분자의 점도 평균 분자량은 단량체의 농도, 입자 안정제의 농도, 분산매 중 물의 농도가 증가함에 따라, 또는 개시제의 농도, 중합 온도가 감소함에 따라 증가하였다. 본 연구에서 얻어진 PAM 라텍스는 0.5 ~ 2.4 μm의 평균 입자경과 20000 ~ 335000 g/mol의 점도 평균 분자량을 나타내었으며 이들은 물중에 분산하였을 때 순간적으로 수용화되었다.

Keywords: dispersion polymerization of acrylamide; ethyl alcohol/water media; number average particle size; viscosity average molecular weight

References
  • 1. Almog Y, Reich S, Levy M, Br. Polym. J., 14, 1331 (1982)
  •  
  • 2. Tseng CM, Lu YY, El-Aasser MS, Vanderhoff JW, J. Polym. Sci. A: Polym. Chem., 24, 2995 (1986)
  •  
  • 3. Paine AJ, J. Polym. Sci. A: Polym. Chem., 28, 2485 (1990)
  •  
  • 4. Shen S, Sudol ED, El-Aasser MS, J. Polym. Sci., 31, 1393 (1993)
  •  
  • 5. Hu R, Dimonie VL, Sudol ED, Elaasser MS, J. Appl. Polym. Sci., 55(10), 1411 (1995)
  •  
  • 6. Tuncel A, Kahraman R, Piskin E, J. Polym. Sci., 50, 303 (1993)
  •  
  • 7. Saenz JM, Asua JM, J. Polym. Sci. A: Polym. Chem., 33(9), 1511 (1995)
  •  
  • 8. Saenz JM, Asua JM, Macromolecules, 31(16), 5215 (1998)
  •  
  • 9. Ober CK, Lok KP, Macromolecules, 20, 268 (1987)
  •  
  • 10. Awan MA, Dimonie VL, Elaasser MS, J. Polym. Sci. A: Polym. Chem., 34(13), 2633 (1996)
  •  
  • 11. Lee KC, Seo HJ, Park JM, Korea Polym. J., 6(5), 405 (1998)
  •  
  • 12. Ray B, Mandal BM, J. Polym. Sci. A: Polym. Chem., 37(4), 493 (1999)
  •  
  • 13. Lee KC, Lee SE, Song BK, Macromol. Res., 10(3), 140 (2002)
  •  
  • 14. Vanderhoff JW, Wiley RMU.S. Patent, 3,284,393 (1966)
  •  
  • 15. Candau F, Zekhnini Z, Heatley F, Franta E, Colloid Polym. Sci., 264, 676 (1986)
  •  
  • 16. Croucher MD, Winnik MAAn Introduction to Polymer Colloids, F. Candau and R.H. Ottewill, Editors, Kluwer Academic Publishers, Netherland, p. 35 (1990)
  •  
  • 17. Barton AFMCRC Handbook of Solubility Parameters and Other Cohesion Parameters, CRC Press, Florida, p. 288 (1983)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2003; 27(4): 358-363

    Published online Jul 25, 2003

  • Received on Feb 3, 2003
  • Accepted on Jun 16, 2003