Article
  • Crystallization Behavior of Poly(trimethylene terephthalate) in a Confined Geometry
  • Lim JE, Lee JK, Lee KH
  • 제한공간에서의 폴리(트리메틸렌 테레프탈레이트)의 결정화 거동
  • 임정은, 이종관, 이광희
Abstract
The development of the crystalline structure of poly(trimethylene terephthalate) (PTT) in a confined geometry was investigated with optical microscope, small angle light scattering, and X-ray diffraction. The rejected distance, which was represented in terms of the parameter δ, played an important role in determining the morphological patterns of poly(ethylene terethphalate) (PET/PTT) blend. In case of stepwise crystallization, the crystallization of PTT commenced in the interspherulitic region between the grown PET crystals and proceeded until the interspherulitic space was filled with the PTT crystals. The spherulitic surface of the PET crystals acted as the nucleation sites where the PTT molecules preferentially crystallized, leading to the formation of transcrystalline structure. As a result, a mixed morphological pattern was observed in the PTT-rich phase: one was a typical spherulitic texture and the other was a transcystalline texture. Some of the molucular conformations of PTT, which could adopt in the absence of the space limitation, were probably forbidden in the interlamellar and/or interfibrillar regions of the PET spherulite. This constraint was responsible for difference in the crystallization and melting behavior of PTT between the intra and interspheulitic regions of PET.

제한공간에서 형성되는 폴리(트리메틸렌 테레프탈레이트) (PTT)의 결정구조를 광학현미경, 소각 광산란 및 X-선 회절로 조사하였다. 인자 δ로 대표할 수 있는 배제 성분의 이동거리는 폴리(에틸렌 테레프탈레이트) (PET/PTT) 블렌드의 형태구조 패턴을 결정하는데 중요한 역할을 하였다. 단계 결정화할 경우, PTT 결정화는 앞서 성장한 PET 결정의 구정 사이 영역에서 시작되었으며, 구정 사이 영역이 채워질 때까지 진행하였다. PET 구정 표면은 PTT 결정화에 매우 효과적인 핵 생성 작용을 유도함으로써 transcrystalline 구조의 PTT 결정을 유도하였다. 그 결과 PTT가 많은 상에서 전형적인 구정 구조와 함께 transcrystalline 구조가 혼재하는 독특한 형태구조가 관찰되었다. PET 구정의 라멜라 사이나 피브릴 사이의 영역에서는 공간적 제한으로 인하여 PTT 분자들의 형태 자유도가 감소하였으며, 이러한 감소 요인은 PET 구정 내ㆍ외부에서의 PTT 결정화와 용융 거동에 차이를 유발하였다.

Keywords: crystallization; morphology; PTT; blend

References
  • 1. Talibuddin S, Wu L, Runt J, Lin JS, Macromolecules, 29(23), 7527 (1996)
  •  
  • 2. Chen HL, Li LJ, Lin TL, Macromolecules, 31(7), 2255 (1998)
  •  
  • 3. Chen HL, Hsiao MS, Macromolecules, 31(19), 6579 (1998)
  •  
  • 4. Yeh F, Hsiao BS, Chu B, Sauer BB, Flexman EA, J. Polym. Sci. B: Polym. Phys., 37(21), 3115 (1999)
  •  
  • 5. Chen HL, Hwang JC, Yang JM, Wang RC, Polymer, 39(26), 6983 (1998)
  •  
  • 6. Stein RS, Khambatta FB, Warner FP, Russell T, Escala A, Balizer E, J. Polym. Sci. Polym. Symp., 63, 313 (1978)
  •  
  • 7. Liu LZ, Chu B, Penning JP, Manley RS, Macromolecules, 30(15), 4398 (1997)
  •  
  • 8. Liu LZ, Chu B, Penning JP, Manley RSJ, J. Polym. Sci. B: Polym. Phys., 38(17), 2296 (2000)
  •  
  • 9. Lee JKControlled Morphology of Crystalline Polymer Blends, Ph.D. Thesis, Inha University, Korea (2002)
  •  
  • 10. An JB, Saito H, Inoue T, Ougizawa T, Kim BS, Kobunshi Nonbunshu, 56, 635 (1999)
  •  
  • 11. Stein RS, Rhodes MB, J. Appl. Phys., 31, 1873 (1960)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2003; 27(4): 293-298

    Published online Jul 25, 2003

  • Received on Dec 17, 2002
  • Accepted on May 20, 2003