Article
  • Rheological Properties of Polyurethane Modified with Polyorganosiloxane
  • Han J, Han MS, Lee SM, Park TS, Kang DW, Kang HJ
  • Polyorganosiloxane 변성 폴리우레탄의 유변 특성
  • 한정우, 한미선, 이상문, 박태석, 강두환, 강호종
Abstract
Polyorganosiloxane (HBPS) modified polyurethane (UMPS) was synthesized to improve weatherability in the polyurethane (ITPU) sealant and its rheological property was investigated. It was found that the viscosity increased with increasing HBPS content in polyurethane and maximum viscosity was observed in UMPS having 70/30 ITPU/HBPS ratio. This was understood that the segregation of HBPS segment in UMPS chain has been developed. Further increasing of the content of HBPS resulted in the lowering of viscosity because of the flexibility of HBPS block segment in UMPS chain. It was also found that UMPS has more sensitive environmental dependency of viscosity than ITPU such as shear rate, humidity and temperature. In additions, UMPS having Si (OCH3)3 end group (TUMPS) by adding coupling agent up to 0.3 wt% resulted in the increase of viscosity by the acceleration of curing. But introducing more than 0.5 wt% curing agent to TUMPS caused the lowering of viscosity because of less NCO group in TUMPS for the curing.

폴리우레탄 (ITPU) 실란트의 내후성 및 변색성 개선을 위하여 polyorganosiloxane변성 폴리우레탄 (UMPS)을 합성하고 이들의 유변 특성을 고찰하였다. 폴리우레탄에 도입되는 polyorganosiloxane block (HBPS)의 함량을 증가시키면 주사슬의 HBPS 부분의 segregation에 의하여 ITPU/HBPS의 비가 70/30에서 점도가 가장 높음을 알 수 있으나 HBPS의 함량을 더 증가시키면 HBPS 주사슬의 유연성에 의하여 점도가 다시 감소함을 확인할 수 있었다. 또한 UMPS는 기존의 폴리우레탄에 비하여 전단속도, 온도, 습도 및 경화 온도의 점도 의존성이 높음을 알 수 있었다. 아울러 UMPS에 커플링제를 첨가할 경우 말단 Si (OCH3)3의 도입으로 경화가 촉진되나 이들의 함량이 0.5 wt%이상 되면 말단 NCO기의 감소에 따라 경화가 늦어지며 그 결과, 점도가 급격히 감소함을 알 수 있었다.

Keywords: polyurethane sealant; polyorganosiloxane; modified polyurethane; rheological properties

References
  • 1. Chew MYL, Wong CW, Kang LHDurability of Building Facade Undertropical Condition, National University of Singapore, Singapore (1996)
  •  
  • 2. Chew MYL, Zhou X, Tay YM, Polym. Testing, 20, 87 (2001)
  •  
  • 3. Chew MYL, Polym. Testing, 19, 653 (2000)
  •  
  • 4. Chew MYL, Polym. Testing, 19, 643 (2000)
  •  
  • 5. Oertel GPolyurethane Handbook, Hanser Publishers, New York (1985)
  •  
  • 6. Kricheldorf HRHandbook of Polymer of Synthesis, Marcel Dekker, Inc., New York (1991)
  •  
  • 7. Lakovenko NN, Shevchuk OS, Appl. Chem., 71, 1634 (1998)
  •  
  • 8. Ghang M, Wu R, Chenx D, Chang J, ANTEC Tech. Papers, 1036 (1988)
  •  
  • 9. Yigor I, McGrath JE, Riffle JS, Wickes LL, Polym. Bull., 8, 535 (1982)
  •  
  • 10. Kozakiewicz J, Prog. Org. Coat., 27, 123 (1996)
  •  
  • 11. Kobmehl G, Neumaun W, Makromol. Chem., 187, 1381 (1986)
  •  
  • 12. Pascault JP, Camberlin Y, Polym. Commun., 27, 230 (1986)
  •  
  • 13. Kozakiewicz J, Prog. Org. Coat., 27, 123 (1996)
  •  
  • 14. Kang DW, Han MS, Kang HJ, Lee SM, Kim YM, J. Korean Ind. Eng. Chem., 12(2), 205 (2001)
  •  
  • 15. Lee SMPreparation of High Performance Polyurethane Sealant Modified with Organosilicone and Their Characteristics, Dankook University, Ph.D. (2002)
  •  
  • 16. Kang DW, Han MS, Kang HJ, Lee SM, Kim YM, J. Ind. Eng. Chem., 7(4), 223 (2001)
  •  
  • 17. Ghijsels A, Raadsen J, Pure Appl. Chem., 52, 1359 (1980)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2002; 26(5): 607-614

    Published online Sep 25, 2002

  • Received on Jun 7, 2002
  • Accepted on Aug 16, 2002