Note
  • Glass Transition Temperature of Poly(methyl methacrylate) Obtained with Ferrocene-Based Diimine Pd(II) Catalyst
  • Park TH, Lee DH, Kim TJ, Park DK
  • Ferrocene-Based Diimine Pd(II) 촉매로 얻은 폴리(메틸메타크릴레이트)의 유리전이온도
  • 박태학, 이동호, 김태정, 박동규
Abstract
The late transition Pd catalyst of low oxophilicity that has ferrocene-based diimine ligand for stabilization of center metal had been synthesized and applied for the polymerization of methyl methacrylate (MMA). In the presence of triisobutylaluminium (TIBA) for impurity scavenger, the effects of polymerization temperature and [TIBA]/[Pd] mole ratio on the yield and glass transition temperature (Tg) of PMMA had been examined. For 40∼50 ℃ of polymerization temperature and 2000∼3000 of [TIBA]/[Pd] mole ratio, higher polymer yields were obtained. It was observed that Tg of PMMA is almost independent to the polymerization temperature but influenced by the [TIBA]/[Pd] mole ratio. With the examination of Tg of PMMA with the structure of polymer, it had been found that Tg of PMMA exhibits a linear relationship with the isotacticity of polymer.

중심 금속을 안정화시킬 수 있는 ferrocene-based diimine 리간드를 가지고 낮은 산소 친화성을 가진 후전이금속인 Pd 촉매를 합성하여, 극성 단량체인 메틸메타크릴레이트 (MMA)의 중합에 사용하였다. 중합계 내의 impurity scavenger로 triisobutylaluminium (TIBA)를 사용하였을 때에, 중합온도와 [TIBA]/[Pd] 몰비가 생성 중합체(PMMA)의 수율 및 유리전이온도 (Tg)에 미치는 영향을 조사하였다. PMMA의 수율은 40∼50 ℃의 중합온도 및 2000∼3000의 [TIBA]/[Pd] 몰비에서 가장 높았다. PMMA의 Tg는 중합온도에는 크게 영향을 받지 않으나, [TIBA]/[Pd] 몰비에 의존한다는 것을 관찰할 수 있었다. PMMA의 Tg의 변화를 PMMA의 미세구조와 연관시켜 조사한 결과, PMMA의 Tg가 이소탁틱도와 직선적 관계를 가짐을 알았다.

Keywords: glass transition temperature; poly(methyl methacrylate); Pd catalyst; tacticity

References
  • 1. Lee DH, Kang KK, Polym. Sci. Technol., 12(3), 312 (2001)
  •  
  • 2. Lee DH, Noh SKMetallocene-based Polyolefins, eds. by J. Scheirs and W. Kaminsky, vol. 1, p. 365, John Wiley & Sons, Ltd., New York (2000)
  •  
  • 3. Lee DH, Yoon KB, Noh SK, Woo SS, Macromol. Symp., 118, 129 (1997)
  •  
  • 4. Lee DH, Lee JH, Kim HJ, Kim WS, Min KE, Park LS, Seo KH, Kang IK, Polym.(Korea), 25(4), 468 (2001)
  •  
  • 5. Lee DH, Noh SK, Korea Polym. J., 9(2), 71 (2001)
  •  
  • 6. Collins S, Ward DG, J. Am. Chem. Soc., 114, 5460 (1992)
  •  
  • 7. Deng H, Shiono T, Soga K, Macromolecules, 28(9), 3067 (1995)
  •  
  • 8. Ittel SD, Johnson LK, Brookhart M, Chem. Rev., 100(4), 1169 (2000)
  •  
  • 9. Park DK, Kim TJ, Lee DH, Park TH87th Annual Meeting of the Korean Chemical Society Program and Abstracts, p. 138, Korean Chemical Society, Seoul (2001)
  •  
  • 10. Deng H, Winkelbach H, Taeji K, Kaminsky W, Soga K, Macromolecules, 29(20), 6371 (1996)
  •  
  • 11. Cameron PA, Gibson VC, Graham AJ, Macromolecules, 33(12), 4329 (2000)
  •  
  • 12. Ibbett RNNMR Spectroscopy of Polymers, p. 31, Blackie A. & P., New York (1993)
  •  
  • 13. Martin FF, Pierola IF, Horta A, J. Polym. Sci. B: Polym. Phys., 19, 1353 (1981)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2002; 26(3): 410-414

    Published online May 25, 2002

  • Received on Feb 15, 2002
  • Accepted on Apr 29, 2002