Article
  • Preparation and Characterization of Hydrogels of PVA and PVP Containing Chitosan by Radiation
  • Park KR, Nho YC
  • 방사선에 의한 키토산을 포함하는 PVA와 PVP 하이드로겔의 제조 및 특성
  • 박경란, 노영창
Abstract
In this study, hydrogels from mixtures of chitosan/poly(vinyl alcohol)(PVA) and chitosan/poly(N-vinylpyrrolidone)(PVP) were prepared by γ-ray irradiation, and the mechanical properties such as gelation, water absorptivity and gel strength were examined to evaluate the applicability of these for wound dressing. The PVA: chitosan and PVP: chitosan ratio were in the range of 97:3~90:10, and the solid concentration of PVA/chitosan and PVP/chitosan solution were 15 wt%. Gamma irradiation with doses of 25, 35, 50, 60 and 70kGy, was exposed to mixtures of PVA/chitosan and PVP/chitosan to evaluate the effect of irradiation dose. Gel content and gel strength increased as chitosan concentrations in PVA/chitosan and PVP/chitosan decreased, and as irradiation dose increased. Swelling degree increased as chitosan concentrations in PVP/chitosan and PVA/chitosan increased, and as irradiation dose decreased.

본 연구에서는, (60)Co 방사선(γ-rays) 가교를 이용하여 PVA/키토산과 PVP/키토산의 혼합물로부터 하이드로겔을 제조하였다. 하이드로겔이 상처 치료용 드레싱으로 사용될 수 있는지 예측하기 위해 겔화율, 팽윤도, 겔강도같은 기계적 성질을 측정하였다. PVA와 키토산 및 PVP와 키토산의 비는 97:3~90:10이고, PVA/키토산 밑 PVP/키토산 용액의 고형분의 농도는 15 wt%이었다. 하이드로겔의 기계적 성질에 조사선량이 미치는 영향을 예측하기 위해 PVA/키토산 및 PVP/키토산 혼합물에 25 ~ 70kGy의 감마선을 조사하였다. 겔화율과 겔강도는 키토산 조정비가 작을수록, 조사선량이 커질수록 증가하였다. 팽윤도는 키토산 조성비가 클수록, 조사선량이 작을수록 증가하였다.

Keywords: hydrogels; radiation; PVA; PVP; chitosan

References
  • 1. Silver FH, DoillonBiocompatibility. Interactions of Biological and Implantable Materials, VCH Publ. Inc., New York (1989)
  •  
  • 2. Peppas NAHydrogels in Medicine and Pharmacy, ed. by Boca Raton, vol. I, II, III, CRC Press. Ind., Florida, 1986, 1987
  •  
  • 3. Pedley DG, Skelly PJ, Tighe BJ, Br. Polym. J., 10, 99 (1980)
  •  
  • 4. Ralner BDBiomedical Applications of Hydrogels: Review and Critical Appraisal, ed. by D.F. Williams, p. 145, CRC Press, Boca Raton (1981)
  •  
  • 5. Kudela VPolymers: Biomaterials and Medical Applications, ed. by J.I. Kroschwitz, p. 228, John Wiley & Sons, New York (1989)
  •  
  • 6. Rosiak JM, J. Control. Release, 31, 9 (1994)
  •  
  • 7. Chand T, Sharma CP, Art. Cells. Art. Org., 18, 1 (1990)
  •  
  • 8. Braek GS, Anthonsen T, Sandford PChitin and Chitosan, Elsevier Press, New York (1989)
  •  
  • 9. Zikakis JPChitin, Chitosan and Related Enzymes, Academic Press, New York (1984)
  •  
  • 10. Burczak K, Fujisato T, Hatada M, Ikada Y, Biomaterials, 15, 231 (1994)
  •  
  • 11. Hirai T, Okinaka T, Amemiya Y, Kobayashi K, Hirai M, Hayashi S, Augewandte Makromolekulare Chemie., 240, 213 (1996)
  •  
  • 12. Clough RL, Shalaby SWRadiation Effects on Polymers, p. 271, Maple Press. Inc., York, PA (1990)
  •  
  • 13. Rosiak JM, Rucinska-Rybus A, Pekala WU.S. Patent, 4,871,490 (1989)
  •  
  • 14. Rosiak JM, Ulanski P, Pajensky LA, Yoshii F, Makuuchi K, Radiat. Phys. Chem., 46(2), 161 (1995)
  •  
  • 15. Razzak MT, Erizal Z, Dewi SP, Lely H, Taty E, Sukirno, Radiat. Phys. Chem., 55, 153 (1999)
  •  
  • 16. Conix A, Smets G, J. Polym. Chem., 13, 221 (1955)
  •  
  • 17. Seo H, Mitsuhashi K, Tanibe HIn Advanced in Chitin and Chitosan, eds. by C.J. Brine, P.A. Sandford, and J.P. Zikakis, p. 34, Elservier Applied Science, London (1992)
  •  
  • 18. Shu P, Schmitt KD, Colloids Surf. A: Physicochem. Eng. Asp., 110, 273 (1996)
  •  
  • 19. Tranquilan C, Yoshii F, Dela Rosa AM, Makuuchi K, Radiat. Phys. Chem., 55, 127 (1999)
  •  
  • 20. Miranda LF, Lugao AB, Machado LDB, Ramanathan LV, Radiat. Phys. Chem., 55, 709 (1999)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2001; 25(5): 728-735

    Published online Sep 25, 2001

  • Received on Mar 30, 2001