Article
  • Properties of Conductive Polymer Composite Films Fabricated under High Intensity Electric Fields: Effect of CF Sizing Treatment
  • Ko H, Kim J, Lim S, Kim J, Choe CR, Mironov VS, Park M
  • 고전기장을 이용한 전도성 고분자 복합필름의 제조 및 특성 연구 : 탄소섬유 Sizing 처리가 탄소섬유/폴리에틸렌 필름의 특성에 미치는 영향
  • 고현협, 김중현, 임순호, 김준경, 최철림, Mironov VS, 박민
Abstract
Electrically conductive carbon fiber/high density polyethylene (CF/HDPE) composite films were fabricated by new method, so called electron-ion technology(EIT) and the effects of CF epoxy sizing on the volumetric resistivity, tensile strength and interphase properties of the films were investigated. While epoxy sizing increased conductivity of composite films resulting from enhanced tunneling effect, it reduced interphase adhesion between CF and HDPE because polar epoxy sizing and nonpolar HDPE are incompatible. Consequently epoxy sized CMCF(S)) caused significant reduction in the volumetric resisitivity and tensile strength of composite films when compared with unsized CF(CF(U)). Epoxy sizing reduced nucleating efficiency of CF(S), therefore CF(S)/HDPE composite films showed nonuniform transcrystalline layer when compared with CF(U)/HDPE composite films.

새로운 복합재료 제조 기술인 electron-ion technology(EIT)를 이용하여 전도성 탄소섬유/고밀도 폴리에틸렌(CF/HDPE) 복합필름을 제조하고 탄소섬유 에폭시 sizing이 제조된 필름의 체적비저항과 인장강도 그리고 계면 특성에 미치는 영향에 대하여 연구하였다. 에폭시 sizing은 tunneling 효과를 좋게 해서 복합재료 필름의 전도성을 향상시키는 반면, 극성인 에폭시 sizing은 무극성인 폴리에틸렌과의 친화성이 없어서 탄소섬유와 폴리에틸렌간의 계면결합력을 감소시키므로 에폭시 sized 탄소섬유(CF(S))는 unsized 탄소섬유(CF(U))에 비하여 필름의 체적비저항과 인장강도를 감소시켰다. 에폭시 sizing은 탄소섬유의 nucleating efficiency를 떨어뜨려서 CF(S)/HDPE 필름이 CF(U)/HDPE 필름보다 불규칙적이고 덜 발달된 transcrystalline layer를 형성함을 관찰할 수 있었다.

Keywords: conductive carbon fiber reinforced composites; high intensity electric fields; epoxy sizing; interphase; transcrystallization

References
  • 1. Margolis JMConductive Polymers and Plastics, Chapman and Hall, New York (1989)
  •  
  • 2. Bhattacharya SKMetal-Filled Polymers: Properties and Applications, Marcel Dekker, New York-Basel (1986)
  •  
  • 3. Zhang MQ, Zeng HMHandbook of Thermoplastics, ed. by O. Olabisi, Marcel Dekker, New York (1997)
  •  
  • 4. Hall DEInternational Encyclopedia of Composites, ed. by S.M. Lee, vol. I, p. 469, VCH, New York (1991)
  •  
  • 5. Chung DDLCarbon Fiber Composites, Butterworth-Heinemann, Boston (1994)
  •  
  • 6. Mallick PKFiber Reinforced Composites, Marcel Dekker, New York (1993)
  •  
  • 7. Carlsson LAThermoplastic Composite Materials, Elsevier, Amsterdam-Oxford-New-York-Tokyo (1991)
  •  
  • 8. Folkes MJShort Fiber Reinforced Thermoplastics, ed. by M.J. Beris, John Wiley and Sons, Chichester-New York-Brisbane -Toronto-Singapore (1982)
  •  
  • 9. Miyauchi S, Togashi E, J. Appl. Polym. Sci., 30, 2743 (1985)
  •  
  • 10. Donnet JB, Bansal RCCarbon Fibers, Marcel Dekker, New York (1999)
  •  
  • 11. Carbon and High Performance Fibers: Directory and Databook, Chapman & Hall, London-Glasgow-Weinheim-New York-Tokyo-Melbourne-Madras, 1995
  •  
  • 12. Fitzer E, Weiss R, Carbon, 25, 455 (1987)
  •  
  • 13. Drzal LT, rich MJ, Koenig MF, Lloyd P, J. Adhes., 16, 133 (1983)
  •  
  • 14. Cheng TH, Zhang J, Yumitory S, Jones FR, Anderson CW, Composites, 25, 661 (1994)
  •  
  • 15. Zhang MQ, Xu JR, Zhang ZY, Zeng HM, Xiong XD, Polymer, 37(23), 5151 (1996)
  •  
  • 16. Mader E, Compos. Sci. Technol., 57, 1077 (1997)
  •  
  • 17. Hasegawa TRecent Advances of Polymer Compounds, CMC, Tokyo (1993)
  •  
  • 18. Mironov VS, Park M, Compos. Sci. Technol., 60, 927 (2000)
  •  
  • 19. Alexander LEX-Ray Diffraction Methods in Polymer Science, Wiley-Interscience, New York-London-Sydney-Toronto (1969)
  •  
  • 20. Jachym BJCarbon Black-Polymer Composites, ed. by E.K. Sichel, Marcel Dekker, New York-Basel (1982)
  •  
  • 21. Wu SPolymer Interface and Adhesion, Marcel Dekker, New York-Basel (1982)
  •  
  • 22. Mathes KNEncyclopedia of Polymer Science and Engineering, ed. by J.I. Kroschwitz, vol. V, Wiley & Sons, New York (1986)
  •  
  • 23. Seanor DAElectrical Properties of Polymers, Academic Press, New York-London-Paris (1982)
  •  
  • 24. Wang S, Chung DDL, J. Mater. Sci., 35(1), 91 (2000)
  •  
  • 25. Zhang XW, Pan Y, Shen L, Yi XS, J. Appl. Polym. Sci., 77(4), 756 (2000)
  •  
  • 26. Moffatt DM, Runt JP, Halliyal A, Newnham RE, J. Mater. Sci., 24, 609 (1989)
  •  
  • 27. Wei DF, Zhao TJ, Yi XS, J. Appl. Polym. Sci., 77(1), 53 (2000)
  •  
  • 28. Meyer J, Polym. Eng. Sci., 14, 706 (1974)
  •  
  • 29. Yumitori S, Wang D, Jones FR, Composites, 25, 698 (1994)
  •  
  • 30. Ishida H, Bussi PStructure and Properties of Composites, ed. by T.W. Chou, VSH, Weinhein-New-York-Basel-Cambridge-Tokyo (1993)
  •  
  • 31. Lopez LC, Wilkes GL, J. Thermoplastic. Comp. Mater., 4, 58 (1991)
  •  
  • 32. Carvalho WS, Bretas RES, Eur. Polym. J., 26, 817 (1990)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2001; 25(2): 293-301

    Published online Mar 25, 2001

  • Received on Nov 7, 2000