Article
  • Synthesis and Cholesteric Mesophase Properties of (Hydroxypropyl)celluloses, Their Ester and Ether Derivatives
  • Jeong SY, Jeong JH, Ma YD, Tsujii Y
  • (Hydroxypropyl)celluloses와 에스테르 및 에테르 유도체들의 합성과 Cholesteric 상의 특성
  • 정승용, 정종현, 마영대, Tsujii Y
Abstract
Two kinds of (hydroxypropyl)celluloses (HPCs) with different molar substitution(MS) and three types of derivatives based on the HPCs: (acetoxypropyl)celluloses, (ethoxypropyl)celluloses, and (cyanoethoxypropyl)celluloses were synthesized, and their thermal and mesomorphic properties were investigated. All samples, which exhibit cholesteric reflection colours at room temperature, formed right-handed helicoidal structures whose optical pitches(λ(ms)) increase with temperature. However, the isotropization(T(i)) and glass temperatures, the magnitude of λ(m) of the mesophase at the same temperature, and the temperature dependence of λ(m) of the investigated derivatives highly depended on MS and the length and structure of the side chain introduced in HPC. The results were discussed in terms of the difference in the polarity and flexibility of the substituents and the distance between the main chains. For all derivatives, λ(m) values approached infinity at temperatures above the T(i) of the mesophase, and no reversal in the sense of the pitch with temperature was detected.

몰치환도(MS)가 다른 두 종류의 (hydroxypropyl)celluloses(HPCs)와 이들로부터 3가지의 유도체, 즉 (acetoxypropyl)celluloses, (ethoxypropyl)celluloses와 (cyanoethoxypropyl)celluloses들을 합성함과 동시에 이들의 열 및 액정상의 특성을 검토하였다. 모든 시료들은 상온에서 cholesteric 상의 반사색깔들을 나타내며 온도상승에 의해 광학 pitch(λms)가 증가하는 우측방향의 나선구조를 형성하였다. 그러나, 검토한 유도체들의 액정상에서 등방상액체로의 전이온도(Ti)와 유리전이온도, 동일한 온도에서 액정상이 나타내는 λm의 크기 그리고 λm의 온도의존성은 MS와 HPC에 도입된 측쇄의 길이 및 화학구조에 크게 의존하였다. 이들의 결과를 치환기의 극성과 유연성의 차이 그리고 주쇄들간의 거리 등과의 관련하에서 검토하였다. 모든 유도체들에 있어서, λm값들은 액정상의 Ti보다 높은 온도에서 무한대로 접근하므로 온도에 의한 나선방향의 역전은 검출되지 않았다.

Keywords: (hydroxypropyl)celluloses and their derivatives; molar substitution; cholesteric pitch; length and structure of the side chain

References
  • 1. Simamura K, White JL, Fellers JF, J. Appl. Polym. Sci., 26, 2615 (1981)
  •  
  • 2. Tseng SL, Valente A, Gray DG, Macromolecules, 14, 715 (1981)
  •  
  • 3. Fukuda T, Takada A, Miyamoto TCellulosic Polymers, Blends and Composites, ed. by R.D. Gilbert, chap. 3, p. 47, Hanser Verlag, Munich (1994)
  •  
  • 4. Fukuda T, Tsujii Y, Miyamoto T, Macromol. Symp., 99, 257 (1995)
  •  
  • 5. Ma YD, Polym. Sci. Technol., 8(5), 555 (1997)
  •  
  • 6. Shibayev YP, Yekayeva IV, Polym. Sci. USSR, 29, 2914 (1987)
  •  
  • 7. Bhadani SN, Gray DG, Mol. Cryst. Liq. Cryst., 99, 29 (1983)
  •  
  • 8. Laivins GV, Gray DG, Polymer, 26, 2435 (1985)
  •  
  • 9. Laivins GV, Sixou P, Gray DG, J. Appl. Polym. Sci. Phys. Ed., 24, 2779 (1986)
  •  
  • 10. Ritcey AM, Gray DG, Macromolecules, 21, 1251 (1988)
  •  
  • 11. Tseng SL, Laivins GV, Gray DG, Macromolecules, 15, 1262 (1982)
  •  
  • 12. Steinmeier H, Zugenmaier P, Carbohyd. Res., 173, 75 (1988)
  •  
  • 13. Pawlowski WP, Gilbert RD, Fornes RE, Purrington ST, J. Appl. Polym. Sci. Phys. Ed., 25, 2293 (1987)
  •  
  • 14. Rusig I, Godinho MH, Varichon L, Sixou P, Dedier J, Filliatre C, Martins AF, J. Appl. Polym. Sci. Phys. Ed., 32, 1907 (1994)
  •  
  • 15. Guittard F, Yamagishi T, Cambon A, Sixou P, Macromolecules, 27(23), 6988 (1994)
  •  
  • 16. Yamagishi TA, Guittard F, Godinho MH, Martins AF, Cambon A, Sixou P, Polym. Bull., 32(1), 47 (1994)
  •  
  • 17. Yamagishi TKyoto University (1989)
  •  
  • 18. Lee JL, Pearce EM, Kwei TK, Macromolecules, 30(26), 8233 (1997)
  •  
  • 19. Lee JL, Pearce EM, Kwei TK, Macromol. Chem. Phys., 199, 1033 (1998)
  •  
  • 20. Yamagishi TA, Sixou P, Polymer, 36(11), 2315 (1995)
  •  
  • 21. Wojciechowski P, J. Appl. Polym. Sci., 76(6), 837 (2000)
  •  
  • 22. Klug EDU.S. Patent, 3,278,520 and 3,278,521 (1966)
  •  
  • 23. Kondo T, Gray DG, J. Appl. Polym. Sci., 45, 417 (1992)
  •  
  • 24. Takada A, Fukuda T, Watanabe J, Miyamoto T, Macromolecules, 28(9), 3394 (1995)
  •  
  • 25. Mays JW, Macromolecules, 21, 3179 (1988)
  •  
  • 26. Ho FFL, Koher RR, Ward GA, Anal. Chem., 44, 178 (1972)
  •  
  • 27. Kimura K, Shigemura T, Kubo M, Maru Y, Makromol. Chem., 186, 61 (1985)
  •  
  • 28. Sato T, Tsujii Y, Minoda M, Kita Y, Miyamoto T, Makromol. Chem., 13, 647 (1992)
  •  
  • 29. Fukuda T, Sato T, Miyamoto T, Sen-I Gakkaishi, 48, 320 (1992)
  •  
  • 30. Lee DS, Perlin AS, Carbohydr. Res., 106, 1 (1982)
  •  
  • 31. Rusig I, Dedier J, Filliatre C, Godinho MH, Varichon L, Sixou P, J. Polym. Sci. Chem. Ed., 30, 895 (1992)
  •  
  • 32. Charlet G, Gray DG, Macromolecules, 20, 33 (1987)
  •  
  • 33. de Vires H, Acta Crystallogr., 4, 219 (1951)
  •  
  • 34. Chandrasekhar SLiquid Crystals, 2nd ed., chap. 4, p. 213, Chambridge University Press (1992)
  •  
  • 35. Watanabe J, Nagase T, Macromolecules, 21, 171 (1988)
  •  
  • 36. Takada A, Fukuda T, Miyamoto T, Watanabe J, Cell. Chem. Technol., 24, 693 (1990)
  •  
  • 37. Yamagishi T, Fukuda T, Miyamoto T, Ichizuka T, Watanabe J, Liq. Cryst., 7, 155 (1990)
  •  
  • 38. Sakajri K, Saeki S, Kawauchi S, Watanabe J, Polym. J., 32, 803 (2000)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2001; 25(2): 279-292

    Published online Mar 25, 2001

  • Received on Oct 26, 2000