Article
  • Preparation and Properties Enhancement of Epoxy Resin Employing Poly(amic acid) (PAA)
  • Lee YT, Bae SH, Park BC
  • Poly(amic acid) (PAA)를 함유한 에폭시 수지의 제조 및 물성 향상
  • 이용택, 배성호, 박병천
Abstract
Epoxy resin based upon the N,N'-diglycidylaniline which is widely used in optic, electronic and composite material. We modified this epoxy resin with poly(amic acid) (PAA) that is a precursor of polyimide. To improve the mechanical property we controlled PAA content and imidization ratio. Pi-modified epoxy blends were prepared for the formation of IPN structure. The possible reaction in the epoxy resin/PAA blends were investigated by FT-IR and inherent viscosity techniques. Thermal properties are measured by TGA, DSC, and TMA. Mechanical properties are measured by UTM and impact test machine. Morphology is investigated by SEM. Thermal stability improved with increasing the content of PAA in blends. As the content of PAA increases in blend, the glass transition temperature and thermal expansion coefficient decreases. Increasing impact strengths in J/m in the range of 920 similar to 2412 were observed in blends. The PAA segment may act as a toughening agent in the epoxy networks, thus contributing the impact strength improvement of the blends.

전자재료 및 복합재료의 매질 등에 널리 사용되고 있는 에폭시 수지중 N,N′-diglycidylaniline에 폴리이미드의 전구체로서 poly(amic acid) (PAA)를 도입하여 에폭시의 물성을 향상시키기 위해, PAA의 함량과 이미드화 정도를 조절하여 상호 침투형 고분자 형식(IPN's)으로 중합하였다. FT-IR과 고유점도 측정으로 반응을 확인하였으며 TGA, DSC, TMA, UTM, SEM을 사용하여 열적, 기계적 특성 및 표면구조를 측정하였다. 그 결과 PAA함량의 증가에 따라 내열성의 향상과 유리전이온도의 감소 및 열팽창계수의 감소를 나타내었으며, PAA첨가후 에폭시의 기계적 특성이 향상되었다. 내충격성은 PAA 함량에 따라 920∼2412 J/m의 값을 나타내었고 PAA 분절들이 에폭시 네트워크에서의 강인화제로서 내충격성을 향상시킴을 알 수 있었다.

Keywords: epoxy blends; polyamic acid; polyimide; mechanical property; IPN

References
  • 1. Bauer RSEpoxy Resin Chemistry, AGS Advances in Chemistry Series No. 114, American Chemical Society, Washington DC (1979)
  •  
  • 2. Lee H, Nevile KHandbook of Epoxy Resins, McGraw-Hill, New York (1967)
  •  
  • 3. Schwartz MMComposite Materials Handbook, McGraw-Hill, New York (1984)
  •  
  • 4. Brinson HGEngineered Materials Handbook, vol. 1, ASM International, New York (1987)
  •  
  • 5. Ochi M, J. Adhes. Soc. Jap., 23, 346 (1988)
  •  
  • 6. Ochi M, Yoshizumi M, Yamashita K, Shimbo M, J. Adhes. Soc. Jap., 25, 222 (1989)
  •  
  • 7. Nakamura Y, Yomauchi M, Iko K, Okubo M, Matsumoto T, J. Adhes. Soc. Jap., 26, 295 (1990)
  •  
  • 8. Bucknall CB, Yoshii T, British Polym. J., 10, 53 (1978)
  •  
  • 9. Wang TT, Zupko HM, J. Appl. Polym. Sci., 26, 2391 (1981)
  •  
  • 10. Kunz SC, Sayre JA, Assink RA, Polymer, 23, 1987 (1982)
  •  
  • 11. Bartlet P, Pascault JP, Sautereau H, J. Appl. Polym. Sci., 30, 2995 (1985)
  •  
  • 12. Kinloch AJ, Gilbert DG, Shaw SJ, J. Mater. Sci., 21, 1051 (1986)
  •  
  • 13. Yee AF, Pearson RA, J. Mater. Sci., 21, 2462 (1986)
  •  
  • 14. Koo K, Inoue T, Miyasaka K, Polym. Eng. Sci., 25, 741 (1985)
  •  
  • 15. Angola JC, Fujita Y, Sakai T, Inoue T, J. Polym. Sci. Polym. Phys. Ed., 26, 807 (1988)
  •  
  • 16. Wilkinson SP, Ward TC, McGrath JE, Polymer, 34(4), 870 (1993)
  •  
  • 17. Mittal KLPolyimides Synthesis, Characterization and Applications, p. 51, Plenum, New York (1984)
  •  
  • 18. Kawakami Y, Abe T, Polym. J., 24, 1129 (1992)
  •  
  • 19. Lai JY, Lee MH, Chen SH, Polym. J., 26, 1360 (1994)
  •  
  • 20. Advances in Interpenetrating Polymer Networks, eds. by D. Klempner and K.C. Frisch, vol. IV, Technomic Publishing Co., Inc., Pennsylvania, 1994
  •  
  • 21. Mukherjee GS, Saraf MN, J. Polym. Sci. B: Polym. Phys., 33(6), 855 (1995)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2001; 25(2): 254-262

    Published online Mar 25, 2001

  • Received on Oct 6, 2000