Article
  • Charactristic Change of Polypyrrole Composites with Variation of the Polyelectrolyte
  • Lee YH, Shim WS, Lee DS
  • Polyelectrolyte의 종류에 따른 전도성 고분자 폴리피롤 복합체의 특성 변화
  • 이연희, 심우선, 이두성
Abstract
A series of polypyrrole(PPYy) composites were prepared by electrochemical polymerization of pyrrole in the presence of polyelectrolyte copolymers. Polyelectrolyte copolymers were composed of acrylamide and various electrolytes with different chemical structure. The electrochemical activity, electrochemical stability and ion mobility in the redox process are examined by use of EQCM. Electrochemical activity of PPy composites was changed with the kind of the dopants. PPy composite doped with poly(AAM-co-2-methyl-e-propene-1-sulfonate) showed the best electrochemical activity. The conductivity PPy composite film increased with the increase of PPy content. When the polyelectrolyte had longer side chain and more rigid structure, the ion mobility inside th PPy composite increased due to the larger free volume.

수용성 고분자 (acrylamide)(AAm)와 여러 종류의 화학적 구조가 다른 전해질을 공중합하고. 이 공중합체를 도판트로 하여 폴리피롤을 전지중합하여 폴리피롤 복합체를 제조하였다. 도판트의 구조 변화에 따른 특성변화를 관찰하기 위해 각각의 전기전도도를 측정하였으며, electrochemical quartz crystal microbalance (EQCM)을 이용하여 산화.환원시 전기화학적 활성, 전기화학적 안정도 및 이온거동을 살펴보았다. 복합체의 전기화학적 활성은 도판드의 종류에 따라 다르며 poly(AAm-co-2-methyl-2-propene-1-sulfonate)를 도판트로 사용한 경우 가장 높은 전기화학적 활성을 보였다. Polyelectrolyte의 측쇄가 길고, rigid한 화학적 구조일수록 수용액 상에서 자유부피가 증가하여 폴리피롤 복합체내에서 단분자 전해질 이온의 거동이 용이하였다.

Keywords: polypyrrole; polyelectrolyte composites; electrochemical activity; ion mobility; electrical conductivity; electrochemical quartz drystal microbalance

References
  • 1. Orata D, Buttry DA, J. Am. Chem. Soc., 109, 3574 (1987)
  •  
  • 2. Omastova M, Kosina S, Pioteck J, Janke A, Pavlinec J, Synth. Met., 81, 49 (1996)
  •  
  • 3. Diaz AF, Kanazawa KK, J. Chem. Soc.-Chem. Commun., 635 (1979)
  •  
  • 4. Torresi RM, de Torresi SIC, Matencio T, De Paoli MA, Synth. Met., 72, 283 (1995)
  •  
  • 5. Zotti G, Schiaron G, Zecchic S, D'Aprano G, Synth. Met., 80, 35 (1996)
  •  
  • 6. Kanatzidis MG, Chem. Eng. News, Dec.(3), 36 (1990)
  •  
  • 7. Gandhi MR, Murray P, Spinks GM, Wallace GG, Synth. Met., 73, 247 (1995)
  •  
  • 8. Naoi K, Lien M, Smyrl WH, J. Electrochem. Soc., 138, 440 (1991)
  •  
  • 9. Shimidzu T, Ohtani A, Iyoda T, Honda K, J. Electroanal. Chem., 224, 123 (1987)
  •  
  • 10. Sung HK, Lee TH, Paik WK, Synth. Met., 69, 485 (1995)
  •  
  • 11. Shim WS, Lee YH, Yeo IH, Lee JY, Lee DS, Synth. Met.accepted for publication
  •  
  • 12. Shim WS, Lee DS, J. Appl. Polym. Sci.accepted for publication
  •  
  • 13. Peres RCD, DePaoli MA, Torresi RH, Synth. Met., 48, 259 (1992)
  •  
  • 14. Baker CK, Qiu YJ, Reynolds JR, J. Phys. Chem., 95, 4446 (1991)
  •  
  • 15. Yoshimura S, Yasujima H, Kobunshi, 37, 886 (1988)
  •  
  • 16. Moon HS, Park JK, Synth. Met., 92, 223 (1998)
  •  
  • 17. Skompska M, Peter LM, J. Electroanal. Chem., 398(1-2), 57 (1995)
  •  
  • 18. Kim DY, Choi JH, Kim SH, Choi HN, Kim CY, Synth. Met., 84, 161 (1997)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1999; 23(4): 587-596

    Published online Jul 25, 1999