Article
  • Construction of Microphase Separated Structure and Blood Compatibility of Segmenthed Polyurethanes with Fluoroalkyl Grou
  • Jo NJ, Lee SK, Lee YS, Lee SH
  • 불소기를 도입한 세그먼트 폴리우레탄의 마이크로 상분리 구조의 구축과 혈액 적합성
  • 조남주, 이상걸, 이영수, 이숙현
Abstract
Segmented polyurethanes consisting of the sft segment with polyethylene glycols(PEG) possessing a higher surface free energy and the hard segment with fluoroalkyl groups possessing a lower surface free energy were prepared. Also, both of PEG and fluoroalkyl groups used in this study have excellent biocompatibility. The surface characteristics of segmented polyurethanes in various environments was investigated by means of X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurements. These measurements revealed that in a hydrated state, the hydrophilic soft segment with PEG was enriched on the surface in order to minimize th interfacial free energy between water and the solid surface, and the degree of the PEG''s migration was changed according to the chain molecular motion and microphase separation state of bulk. It was clearly marked that the blood compatibility of segmented polyurethanes was good for SPU havign a microphase separation structure at the surface in a hydrated state.

Soft segment에 높은 표면 자유 에너지를 가지며 유동성이 커서 단백질의 흡착을 억제하고 혈액적합성이 우수한 polyethylene glyco (PEG)을 도입하고, hard segment에는 낮은 표면 자유 에너지를 가지며 생체적합성이 뛰어난 불소기를 도입하여 마이크로 상분리 구조가 뚜렷하고 그 경계면이 명확한 새로운 세그먼트 폴리우레탄 (SPU)을 제조하였다. 그리고. SPU의 생체모의환경하에서의 표면 화학 조성 및 분자 운동성을 X선 광전자 분광기 (XPS)와 동적 접촉각 측정으로 평가한 결과, 수화상태에서는 물-고체간의 계면 자유 에너지를 최소로 하기 위하여 표면 자유 에너지가 높은 PEG 성분이 표면에 석출됨을 알 수 있었으며, 그 정도는 사슬의 분자 운동성과 벌크의 상분리 구조에 따라 달라졌다. 한편, 세그먼트 폴리우레탄의 혈액적합성은 물-고체 계면에서의 마이크로 상분리 구조를 형성하는 SPU가 가장 우수하였다.

Keywords: segmented polyurethane; polyethylene glycol(PEG); fluoroalkyl group; microphase separation; blood compatibility

References
  • 1. Kim SW, Ehert CD, McRea JC, Briggs C, Bynn SM, Kim HP, Ann. N.Y. Acad. Sci., 416, 513 (1983)
  •  
  • 2. Okano T, Grainger D, Parls KD, Nojiri C, Feijen J, Kim SWArtificial Heart II, eds. by T. Akutsu et al., p. 45, Springer-Verlag, Tokyo (1988)
  •  
  • 3. Vogel MK, Cross RA, Bixler HJ, Guzman RJ, J. Macromol. Sci.-Chem., A4, 675 (1970)
  •  
  • 4. Lundell EO, Kwiatkowski GT, Byck JS, Osterholz FD, Creasy WS, Stewart DD, ACS Symp. Ser., 71, 305 (1976)
  •  
  • 5. Kataoka K, Tsuruta T, Akaike T, Sakurai Y, Makromol. Chem., 181, 1363 (1980)
  •  
  • 6. Lyman DJ, Muir WM, Lee JJ, Trans. ASAIO, 11, 301 (1965)
  •  
  • 7. Ratner BD, Hoffman AS, Hanson SR, Harker LA, Whiffen JD, J. Polym. Sci. Polym. Symp., 66, 363 (1979)
  •  
  • 8. Okano T, Nishiyama S, Shinohara I, Akaike T, Sakurai Y, Kataoka K, Tsuruta T, J. Biomed. Mater. Res., 15, 39 (1981)
  •  
  • 9. Okano T, Takaoka K, Sakurai Y, Shimada M, Akaike T, Shinohara I, Artificial Organs, 5, 468 (1981)
  •  
  • 10. Hirao A, Kato H, Yamaguchi K, Nakahama S, Macromolecules, 19, 1294 (1986)
  •  
  • 11. Yui N, Sanui K, Ogata N, Kataoka K, Okano T, Sakurai Y, J. Biomed. Mater. Res., 20, 929 (1986)
  •  
  • 12. Yui N, Kataoka K, Sakurai Y, Sanui N, Ogata N, Takahara A, Kajiyama T, Makromol. Chem., 187, 943 (1986)
  •  
  • 13. Pike JK, Ho T, Wynne KJ, Chem. Mater., 8, 856 (1996)
  •  
  • 14. Brandwood A, Meijs GF, Gunatillake PA, Noble KR, Schidhelm K, Rizzardo EPolymer Biomaterials in Solution, as Interface and as Solids, Eds., by S.L. Cooper, C.H. Bamford, and T. Tsuruta, p. 647, VSP BV, Netherland (1995)
  •  
  • 15. Li YJ, Matthews KH, Wang YF, Chen TM, Kodama M, Nakaya T, J. Appl. Polym. Sci., 62(4), 687 (1996)
  •  
  • 16. Lin HB, Lewis KB, Scampavia DL, Ratner BD, Cooper SLPolymer Biomaterials in Solution, as Interface and as Solids, eds. by S.L. Cooper, C.H. Bamford, and T. Tsuruta, p. 129, VSP BV, Netherland (1995)
  •  
  • 17. Qiu YX, Klee D, Pluster W, Severich B, Hocker H, J. Appl. Polym. Sci., 61(13), 2373 (1996)
  •  
  • 18. Bergstrom K, Osterberg E, Holmberg K, Hoffman AS, Schuman TP, Kozlowski A, Harris JMPolymer Biomaterials in Solution, as Interface and as Solids, eds. by S.L. Cooper, C.H. Bamford, and T. Tsuruta, p. 195, VSP BV, Netherland (1995)
  •  
  • 19. Han DK, Ryu GH, Park KD, Jeong SY, Kim YH, Min BGPolymer Biomaterials in Solution, as Interface and as Solids, eds. by S.L. Cooper, C.H. Bamford, and T. Tsuruta, p. 181, VSP BV, Natherland (1995)
  •  
  • 20. Zhuang HZ, Marra KG, Ho T, Chapman TM, Gardella JA, Macromolecules, 29(5), 1660 (1996)
  •  
  • 21. Tang YW, Santerre JP, Labow RS, Taylor DG, J. Appl. Polym. Sci., 62(8), 1133 (1996)
  •  
  • 22. Kashiwagi T, Ito Y, Imanishi YPolymer Biomaterials in Solution, as Interface and as Solids, eds. by S.L. Cooper, C.H. Bamford, and T. Tsuruta, p. 277, VSP BV, Natherland (1995)
  •  
  • 23. Lyman DJ, J. Polym. Sci., 45, 49 (1960)
  •  
  • 24. Lyman DJ, Rev. Macromol. Chem., 1, 191 (1966)
  •  
  • 25. Andrade JD, Smith LM, Gregonis DESurface and Interfacial Aspects of Biomedical Polymers, ed. by J.D. Andrade, Vol. 1, p. 249, Plenum Press, New York (1985)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1999; 23(4): 552-561

    Published online Jul 25, 1999