Article
  • Fabrication of Tubular Porous PLGA Scaffold by Emulsion Freeze-drying Method
  • Khang G, Jeon JH, Cho JC, Lee HB
  • 유화동결 건조방법에 의한 튜브형태의 다공성 PLGA 지지체의 제조
  • 강길선, 전주형, 조진철, 이해방
Abstract
A novel emulsion freeze-drying method for fabrication of tubular porous poly(L-lactide-co-glycolide) (75:25 by mole ratio of lactide to glycolide, PLGA) scaffold has been proposed for the application to tissue engineering. Tubular PLGA scaffolds obtained were characterized by mercury porosimetry, scanning electron microscopy and image analysis. PLGA scaffolds with porosity above 90%, medium pore size ranging from 10 to 30 ㎛ with larger pore diameters greater than 100 ㎛, and specific pore area in the range of 27 to 31 (㎡/g) were manufactured by varying processing parameters as PLGA concentration and water volume fraction. It was observed that PLGA scaffolds were highly porous with good interconnections between pores for allowing cell adhesion and growth. It was suggested that the mechanism of the formation pore may be related to emulsion unstability rather than emulsion stability. It might be concluded that this novel scaffolds may be applicable for tubular organ structures to facilitate tissue regeneration or repair in tissue engineering.

인체조직 중에서 비교적 높은 빈도수를 찾아 볼 수 있는 장기의 형태인 튜브형태의 다공성 poly(L-lactide-co-glycolide) (75 : 25 by mole ratio of lactide to glycolide, PLGA) 지지체를 세포조직공학에 응용하기 위하여 유화동결 건조법으로 제조하였고 이들의 물성을 수은다공도계, 전자현미경 및 이미지분석으로 특성결정하였다. PLGA 농도 및 물의 양을 조절하여 제조된 PLGA 지지체의 기공도는 90% 이상이었으며 평균 기공크기 범위는 10-30 ㎛ 그리고 가장 큰 것으로는 100 ㎛ 이상의 것도 관찰되었다. 또한 비기공 면적은 27-31 (m+/g)에 걸쳐 있었으며 기공과 기공사이의 연결은 세포가 성장하기에 적합한 연결된 구조로 확인되었다. 평균 기공크기와 여타이 물성은 PLGA 용액의 농도 및 유화를 생성할 때 첨가되는 물의 양에 의하여 비교적 용이하게 조절되었다. 본 연구의 이러한 결과는 기공의 구조 생성에 있어서 유화 제조시 유화의 안정화보다는 불안정화가 우세하게 기여함을 알 수 있었다.

Keywords: tubular porous PLGA scaffolds; emulsion freeze-drying; tissue engineering; pore structure

References
  • 1. Langer R, Vacanti JP, Science, 260, 920 (1993)
  •  
  • 2. Khang G, Lee JHThe Properties of Biomaterials, in Tissue Engineering: Concepts and Applications, eds. by J.J. Yoo and I. Lee, Chap. 4, Korea Med. Pub. Co., Seoul (1998)
  •  
  • 3. Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R, J. Pediatr. Surg., 23, 3 (1998)
  •  
  • 4. Vacanti CA, Langer R, Schloo B, Vacanti JP, Plast. Reconstr. Surg., 88, 753 (1991)
  •  
  • 5. Cima LG, Vacanti JP, Ingber D, Mooney D, Langer R, J. Biomech. Eng., 113, 143 (1991)
  •  
  • 6. Langer R, Cima LG, Tamada JA, Wintermantel E, Biomaterials, 11, 738 (1990)
  •  
  • 7. Holland SJ, Tighe BJ, Gould PL, J. Control. Release, 4, 155 (1986)
  •  
  • 8. Khang G, Jeon JH, Lee JW, Cho SC, Lee HB, Bio-Med. Mater. Eng., 7, 357 (1997)
  •  
  • 9. Khang G, Lee SJ, Lee JH, Kim YS, Lee HB, Bio-Med. Mater. Eng.to appear (1999)
  •  
  • 10. Williams DF, Mort E, J. Bioeng., 1, 231 (1997)
  •  
  • 11. Bostaman O, J. Bone Joint Surg., 73A(1), 148 (1991)
  •  
  • 12. Singhal JP, Singh H, Ray AR, Rev. Macromol. Chem. Phys., C28, 475 (1988)
  •  
  • 13. Hollinger OJ, Schmitz JP, J. Oral Maxillofac. Surg., 45, 594 (1987)
  •  
  • 14. Khang G, Cho JC, Lee JW, Rhee JM, Lee HB, Bio-Med. Mater. Eng.to appear, 9 (1999)
  •  
  • 15. Mooney DJ, Cima L, Langer R, Mater. Res. Soc. Symp. Proc., 252, 345 (1992)
  •  
  • 16. Klawitter J, Hulbert S, J. Biomed. Mater. Res. Symp., 2(1), 161 (1983)
  •  
  • 17. Yannas IV, Lee E, Orgill DP, Skrabat EM, Murghy GF, Proc. Nat'l Acad. Sci. USA, 86(3), 933 (1989)
  •  
  • 18. Spector M, Michon MJ, Smarook WH, Kwiatkowski GT, J. Biomed. Mater. Res., 12, 655 (1978)
  •  
  • 19. Mooney DJ, Breuer C, McNamara K, Vacanti JP, Langer R, Tissue Eng., 1(2), 107 (1995)
  •  
  • 20. Aubert JH, Chlogh RL, Polymer, 26, 2047 (1985)
  •  
  • 21. Goglewski S, Pennings AJ, Macromol. Chem. Rapid Commun., 4, 675 (1983)
  •  
  • 22. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R, J. Biomed. Mater. Res., 11, 27 (1993)
  •  
  • 23. Mooney DJ, Baldwin DF, Sub NP, Vacanti JP, Langer R, Biomaterials, 17, 1417 (1996)
  •  
  • 24. Ritter HL, Drake LC, Ind. Eng. Chem., 17, 782 (1945)
  •  
  • 25. Smith DM, Hua DW, Earl WL, MRS Bull., 19(4), 44 (1994)
  •  
  • 26. Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R, Biomaterials, 14(5), 323 (1993)
  •  
  • 27. Healy KE, Lom B, Hockberger PE, Biotechnol. Bioeng., 43(8), 792 (1994)
  •  
  • 28. Whang K, Thomas CH, Healy KE, Nuber G, Polymer, 36(4), 837 (1995)
  •  
  • 29. Adamson AWPhysical Chemistry of Surfaces, p. 525, John Wiley, New York (1990)
  •  
  • 30. Everett DHBasic Principles of Colliod Science, p. 115, The Royal Society of Chemistry, London (1989)
  •  
  • 31. Schramm LL, Adv. Chem. Ser., 1, 231 (1992)
  •  
  • 32. Everett DHBasic Principles of Colloid Science, p. 130, The Royal Society of Chemistry, London (1989)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1999; 23(3): 471-477

    Published online May 25, 1999