Article
  • Preparation of Polyethylene Glycol Macromer Grafted Membranes by UV Irradiation Method and Their Bovine Serum Albumin Permeation Characteristics
  • Lee SH, Shin JK, Lee YM
  • UV 조사법을 이용한 Polyethylene Gylcol Macromer가 그라프트된 막의 제조와 Bovine Serum Albumin의 막 투과특성
  • 이승희, 심진기, 이영무
Abstract
An anti-protein stained ultrafiltration membrane was prepared by grafting monoacrylate polyethylene glycol(PEG) macromer onto a polypropylene(PP)membrane with UV-irradiation methods. PEG-grafted membranes can decrease the fouling resulting from the protein filtration. Monoacrylate PEG is prepared by inducing the acrylate functional groups to protein filtration. Monoacrylate PEG is prepared by inducing the acrylate functional groups to the end of PEG chain. Degree of grafting increased with the monomer concentration and UV-irradiation time. The surface modified PP membrane prevented the protein from staining the membrane. The permeation flux of a non-modified PP mombran decreased, while those of other modified PP mombranes did not decrease as such. Also, the permeation flux of bovine serum albumin (BSA) solution showed minimum values near the isoelectric point of pH 5.0 and increased apart from pH 5.0.

UV 조사법과 monoacrylate polyethylene glycol (PEG) macromer를 이용하여 폴리프로필렌(PP)막을 표면 개질하였다. PEG로 친수화된 막은 단백질 투과시 발생되기 쉬운 막오엄 현사을 감소시킬 수 있다. PEG의 말단에 acrylaterl를 도입하여 monoacrylate PEG macromer를 합성하였다. Monoacrylate PEG의 농도와 UV조사 시간이 증가할수록 막에 그라프트되는 monoacrylate PEG양은 증가하였다. 표면이 개질되지 않은 PP막의 단백질 투과유속은 급격히 감소하지만, 개질된 PP막의 투과유속은 개질되지 KSG는 막과는 달리 완만하게 감소하였다. 또한 pH변화에 따른 투과유속은 등전점 영역인 pH 5.0에서 가장 작았으며 이 pH에서 벗어날수록 투과유속은 증가하였다.

Keywords: ultrafiltration; UV-irradiation method; polyethylene glycol; bovine srum albumin(BSA); polypropylene

References
  • 1. Chan CMPolymer Surface Modification and Characterization, p. 18, Carl Hanser Verlag, New York (1994)
  •  
  • 2. Corn S, Vora KP, Strobel M, Lyons CS, J. Adhes. Sci. Technol., 5, 239 (1991)
  •  
  • 3. Bruil A, Brenneisen LM, Terlingen JG, Beugeling T, Vanaken WG, Feijen J, J. Colloid Interface Sci., 165(1), 72 (1994)
  •  
  • 4. Lee YM, Shim JK, Polymer, 38(5), 1227 (1997)
  •  
  • 5. Iwata H, Ivanchenko MI, Miyaki Y, J. Appl. Polym. Sci., 54(1), 125 (1994)
  •  
  • 6. Nystrom M, Jarvinen P, J. Membr. Sci., 60, 275 (1996)
  •  
  • 7. Garg DH, Lenk W, Berwald S, Lunkwitz K, Simon F, Eichhorn KJ, J. Appl. Polym. Sci., 60(12), 2087 (1996)
  •  
  • 8. Higuchi A, Nakagawa T, J. Appl. Polym. Sci., 41, 1973 (1990)
  •  
  • 9. Ulbricht M, Belfort G, J. Membr. Sci., 111(2), 193 (1996)
  •  
  • 10. Yoshigawa E, Morita TU.S. Patent, 3,322,661 (1967)
  •  
  • 11. Pashova VS, Georgiev GS, Dakov VA, J. Appl. Polym. Sci., 51, 807 (1990)
  •  
  • 12. Chan CMPolymer Surface Modification and Characterization, p. 193, Carl Hanser Verlag, New York (1994)
  •  
  • 13. Nabe A, Staude E, Belfort G, J. Membr. Sci., 133(1), 57 (1997)
  •  
  • 14. Ulbricht M, Matuschewski H, Oechel A, Hicke HG, J. Membr. Sci., 115(1), 31 (1996)
  •  
  • 15. Glad B, Irgum K, J. Membr. Sci., 67, 289 (1992)
  •  
  • 16. Cheryan MUltrafiltration and Microfiltration Handbook, Technomic (1998)
  •  
  • 17. Swaminathan T, Chaudhuri M, Sirkar KK, Biotechnol. Bioeng., 23, 1873 (1981)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1999; 23(3): 434-442

    Published online May 25, 1999