Article
  • Photografting of Polystyrenic Polymers: Ⅱ. Phtografting Reaction of Styrene-ethylene-butylene-styrene(SEBS) Rubber and Properties of the Photografted Polymer
  • Yoon CH, Ham HS, Chae KH
  • 폴리스티렌계 고분자의 광그라프트 반응: Ⅱ. Styrene-ethylene-butylene-styrene(SEBS) 고무의 광그라프트 반응 및 광그라프트된 고분자의 물성
  • 윤찬호, 함희석, 채규호
Abstract
In order to change the hydropobic property of styrene-ethylene-butylene-styrene(SEBS) terpolymer from hydrophobic to hydrophilic property, 2-hydroxyethyl methacrylate(HEMA)was photografted by the Friedel-Crafts acylation after acetylation of styrene moieties of SEBS. The photografting yield increased with irradiation time and HEMA concentration. It increased considerably with an addition of Et3N. The contact angle of photografted SEBS with HEMA decreased with the photografting yield implying that the hydrophobic property of SEBS changed to hydrophilic. The glass transition temperature of photografted SEBS with HEMA increase with the photografting yield, while thermal stability decreased. Solubility of the photografted SEBS dropped with the photografting yield in organic solvents.

삼원 공중합체인 styrene-ethylene-butylene-styrene (SEBS)의 소수성 성질을 친수성으로 개질하기 위하여 Friedel-Crafts 아실화 반응을 통하여 아세틸기를 도입한 다음 친수성 단량체인 2-hydroxyethyl methacrylate (HEMA)를 광그라프트시켰다. 광그라프트율은 빛의 조사시간, HEMA의 농도가 증가할수록 증가하였으며 트리에틸아미능ㄹ 첨가하면 광그라프트율이 훨씬 더 증가하였다. 또한 광그라프트율이 증가할수록 물의 접촉각이 감소하는 것으로 보아 SEBS의 소수성 성질에서 친수성 성질로 개질되었음을 알 수 있었다. 유리 전이 온도는 그라프트율이 증가할수록 상승하였으며 TGA분석 결과 SEBS에 비해 그라프트된 SEBS가 열적 성질이 상대적으로 하락하였고 여러 가지 유기용매에 대한 용해도가 현저히 감소하였다.

Keywords: photografting; SEBS rubber; acetylated SEBS; polymer modification

References
  • 1. Yagic Y, Schnabel W, Prog. Polym. Sci., 15, 551 (1990)
  •  
  • 2. Kawai H, J. Appl. Polym. Sci., 8, 2147 (1964)
  •  
  • 3. Slonimuskii GL, J. Polym. Sci., 30, 625 (1959)
  •  
  • 4. Riess C, Hurtrez G, Bahadur TBlock Copolymer, in Encyclopedia of Polymer Science and Engineering, ed. by H. Mark, vol. 2, p. 324, John Wiley and Sons, New York (1985)
  •  
  • 5. Jerome R, Tayt R, Quhadi T, Prog. Polym. Sci., 10, 87 (1984)
  •  
  • 6. Abadie MJM, Qurahmoune D, Brit. Polym. J., 198, 274 (1987)
  •  
  • 7. Nuyken O, Wendner R, Adv. Polym. Sci., 73, 145 (1986)
  •  
  • 8. Sundardi F, Zubir A, Sabarinah Y, Sofiarti W, J. Macromol. Sci.-Chem., A24, 1369 (1987)
  •  
  • 9. Hegazy EA, Ebaid AR, El-Sharabasy SA, Mousa AM, Hassan AY, J. Appl. Polym. Sci., 41, 2941 (1990)
  •  
  • 10. Geacintov N, Stannett V, Abrahamson EW, Hermans J, J. Appl. Polym. Sci., 3, 54 (1960)
  •  
  • 11. Razzak MT, Otsuhata K, Tabata Y, Ohashi F, Takeuchi A, J. Appl. Polym. Sci., 36, 645 (1988)
  •  
  • 12. Shukla SR, Gopala GV, Athalye AR, J. Appl. Polym. Sci., 44, 577 (1992)
  •  
  • 13. Kubota H, Yoshino N, Ogiwara Y, J. Appl. Polym. Sci., 39, 1231 (1990)
  •  
  • 14. Yao ZP, Ranby B, J. Appl. Polym. Sci., 40, 1647 (1990)
  •  
  • 15. Kubota H, Eur. Polym. J., 29, 551 (1993)
  •  
  • 16. Kinstle JF, Watson SL, J. Rad. Curing, 2, 7 (1975)
  •  
  • 17. Chae KH, Yoon CH, Ham HS, Polym.(Korea), 20(1), 17 (1996)
  •  
  • 18. Rabek JFMechanisms of Photophysical Processes and Photochemical Reactions in Polymers, p. 269, John Wiley & Sons, New York (1987)
  •  
  • 19. The Polymer Society of Korea, Experiments in Polymers, p. 219, Free Academy, Seoul (1993)
  •  
  • 20. Yamashita K, Ito K, Tsuboi H, Takahama S, Tsuda K, J. Appl. Polym. Sci., 40, 1445 (1990)
  •  
  • 21. Geuskens G, Kanda MN, Eur. Polym. J., 9, 877 (1991)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1999; 23(2): 238-246

    Published online Mar 25, 1999