Article
  • A Study on the Structural Changes during Uniaxial Drawing of Poly(ethylene terephthalate)/Poly(ethylene 2,6-naphthalate) Blend Mono-Filament
  • Chun SW, Park JO, Kang HJ
  • Poly(ethylene terephthalate)/Poly(ethylene 2,6-naphthalate) 블렌드 섬유의 연신에 의한 물성 변화
  • 천상욱, 박종오, 강호종
Abstract
The effects of transesterification and blend composition on the crystallization behavior due to cold drawing of PET/PEN blend fibers have been investigated. It was found that the stress induced crystallization took place with increasing draw down ratio by the determination of decrease in the cold crystallization enthalpy and temperature. The stress induced crystallization for PEN fiber is much stronger than for PET fiber. In the case of PET/PEN blend fibers, blend composition and transesteification level influenced the stress induced crystallization. In general, the crystallinity of blend fiber was relatively less than pure PEN and PET fibers and decreased with increasing transesterification.

폴리에틸렌 테레프탈레이트/폴리에틸렌 나프탈레이트(PET/PEN) 블렌드 섬유의 저온 연신 시, 블렌드의 조성비와 용융 블렌딩에 의하여 발현된 상호에스테르 교환반응이 연신 섬유의 결정화도에 미치는 영향에 대하여 살펴보았다. 연신비 증가에 따른 cold crystallization 엔탈피와 cold crystallization 온도의 감소로서 stress induced crystallization에 의한 결정화가 일어남을 확인하였다. 이러한 현상은 PEN 섬유가 PET 섬유에 비하여 더 잘 일어나며 PET/PEN 블렌드의 경우, 블렌드의 조성비와 상호에스테르 반응에 직접적인 영향을 받음을 알 수 있었다. 블렌드 섬유의 결정화도는 순수 섬유에 비하여 상대적으로 낮으며 상호에스테르 반응정도가 증가함에 따라 감소함을 알 수 있었다.

Keywords: poly(ethylene terephthalate); poly(ethylene naphthalate); blends; stress induced crystallization; transesterification

References
  • 1. Cook JP, Hugill HPW, Lowe ARBr. Patent, 604073 (1948)
  •  
  • 2. Buchner S, Wiswe D, Zachmann HG, Polymer, 30, 480 (1989)
  •  
  • 3. Stewart ME, Cox AJ, Naylor DM, Polymer, 34, 4060 (1993)
  •  
  • 4. Guo M, Zachmann HG, Polymer, 34, 2503 (1993)
  •  
  • 5. Avrami M, J. Chem. Phys., 7, 1103 (1939)
  •  
  • 6. Flory PJ, J. Chem. Phys., 15, 396 (1947)
  •  
  • 7. Cobbs WH, Burton RL, J. Polym. Sci., 10, 275 (1954)
  •  
  • 8. Keller A, Lester GR, Morgan LB, Phil. Trans. Roy. Soc. London, A247, 1 (1954)
  •  
  • 9. Jabarin SA, J. Appl. Polym. Sci., 34, 85 (1987)
  •  
  • 10. Jabarin SA, J. Appl. Polym. Sci., 34, 97 (1987)
  •  
  • 11. Jabarin SA, J. Appl. Polym. Sci., 34, 103 (1987)
  •  
  • 12. Yey GSY, Geil PH, J. Macromol. Sci.-Phys., B1, 251 (1967)
  •  
  • 13. Asano T, Seto T, Polym. J., 5, 72 (1973)
  •  
  • 14. Napolitano MJ, Moet A, J. Appl. Polym. Sci., 34, 1285 (1987)
  •  
  • 15. Cheng SZD, Wunderlich B, Macromolecules, 21, 789 (1988)
  •  
  • 16. Zachmann HG, Wiswe D, Gehrke R, Riekel C, Makromol. Chem. Suppl., 12, 175 (1985)
  •  
  • 17. Menick Z, Chem. Prim., 17, 78 (1967)
  •  
  • 18. Medellin-Rodriguez FJ, Phillips PJ, Lin JS, Macromolecules, 29(23), 7491 (1996)
  •  
  • 19. Leisey CL, Hoffman DC, Zawada JA, Polym. Prepr., 231 (1996)
  •  
  • 20. Ihm DW, Park SY, Chang CG, Kim YS, Lee HK, J. Polym. Sci. A: Polym. Chem., 34(14), 2841 (1996)
  •  
  • 21. Han K, Kang HJ, Polymerto Submitted
  •  
  • 22. Connor MT, Gutierrez MC, Rueda DR, Calleja FJ, J. Mater. Sci., 32(21), 5615 (1997)
  •  
  • 23. Lu X, Windle AH, Polymer, 36(3), 451 (1995)
  •  
  • 24. Andersen E, Zachmann HG, Colloid Polym. Sci., 272, 1352 (1994)
  •  
  • 25. Poter RS, Wang LH, Polymer, 33, 2019 (1992)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1998; 22(6): 943-952

    Published online Nov 25, 1998