Article
  • Ionic Conductivity in PEO-LiCF3SO3-EC/DMC-PAN Hybrid Films
  • Lee YJ, Choi BK
  • PEO-LiCF3SO3-EC/DMC-PAN 혼성 전해질의 이온 전도성
  • 이연진, 최병구
Abstract
Hybrid solid electrolyte films consisting of poly(ethylene oxide) (PEO), LiCF3SO3, a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) and poly (acrylonitrile) (PAN) were examined in order to obtain the best compromise between high conductivity, homogeneity and dimensional stability. Measurements of electrical conductivity and differential scanning calorimetry (DSC) have been carried out. The higher the content of solvent (EC/DMC), the higher the conductivity. The highest conductivity of 1.6 x 10-3 S/cm at 30℃ is found for a film of 28PEO-7LiCF3SO3)-55EC/DMC-10PAN. The materials having higher EC/DMC content are more likely to be a gel-electrolyte than a plasticized PEO-salt electrolyte. The Li+ ions in these films seem to migrate primarily through the solvent domains as in the gel-electrolytes. The PEG-PAN hybrid film exhibits high ionic conductivity comparable to that of PAN-based gel electrolytes, good mechanical strength and, therefore, is a promising candidate for solid electrolytes of lithium polymer batteries.

이온전도도가 높으며 균일하고 또 역학적 강도가 우수한 고체 전해질 막을 얻기 위하여 PEO, LiCF3SO3, EC와 DMC의 혼합 용매, PAN으로 이루어진 혼성막을 다양한 조성으로 제조하고 전기 전도도 측정과 열분석을 하였다. 유기용매가 많이 포함될수록 대체로 전도도 값이 크며, 28PEO-7LiCF3SO3-55EC/DMC-10PAN 막은 30℃에서 1.6*10-3S/cm로 가장 높은 전도도를 나타내었다. 유기용매 EC/DMC의 양이 많은 전해질 막은 가소화된 PEO-염 전해질이라기보다는 겔-전해질에 가깝다. 이러한 막에서의 Li+ 이온의 이동은 겔-전해질에서와 같이, 우선적으로 용매영역에서 이루어지는 것으로 보인다. 본 연구의 혼성막은 PAN계의 겔-전해질에 버금가는 전도도 값을 가질 뿐만 아니라 기계적 강도도 우수하므로 리튬 고분자 전지의 전해질 막으로의 응용이 가능할 것으로 사료된다.

Keywords: ionic conductivity; hybrid film; polymer electrolyte; gel-electrolyte

References
  • 1. MacCallum JR, Vincent CAPolymer Electrolyte Reviews, Elsevier, London (1987)
  •  
  • 2. Alamgir A, Abraham KMLithium Batteries, ed. G. Pistoia, ch. 3, Elsevier, Amsterdam, and references therein (1994)
  •  
  • 3. Watanabe M, Kanba M, Nagaoka K, Shinohara I, J. Polym. Sci., 21, 939 (1983)
  •  
  • 4. Abraham KM, Alamgir M, J. Electrochem. Soc., 137, 1657 (1990)
  •  
  • 5. Croce F, Gerace F, Dautzemberg G, Passerini S, Appetecchi GB, Scrosati B, Electrochim. Acta, 39(14), 2187 (1994)
  •  
  • 6. Bohnke O, Fraud G, Rezrazi M, Rousselot C, Truche C, Solid State Ion., 66, 9 (1993)
  •  
  • 7. Tsuchida E, Ohno H, Tsunemi K, Electrochim. Acta, 28, 833 (1983)
  •  
  • 8. Alamgir M, Abraham KM, J. Electrochem. Soc., 140, L96 (1993)
  •  
  • 9. Pistoia G, Antonini A, Wang G, J. Power Sources, 58, 139 (1996)
  •  
  • 10. Walker CW, Salomon M, J. Electrochem. Soc., 140, 3409 (1993)
  •  
  • 11. Do JS, Chang CP, Lee TJ, Solid State Ion., 89(3-4), 291 (1996)
  •  
  • 12. Vallee A, Besner S, Prudhomme J, Electrochim. Acta, 37, 1579 (1992)
  •  
  • 13. Wang C, Liu Q, Cao Q, Meng Q, Yang L, Solid State Ion., 53-56, 1106 (1992)
  •  
  • 14. Wunderlich BMacromolecular Physics, vol. 3, p. 67, Academic, New York (1980)
  •  
  • 15. Watanabe M, Itoh M, Sanui K, Ogata N, Macromolecules, 20, 569 (1987)
  •  
  • 16. Wieczorek W, Such K, Florjanczyk Z, Stevens JR, J. Phys. Chem., 98(27), 6840 (1994)
  •  
  • 17. Tominaga Y, Ito K, Ohno H, Polymer, 38(8), 1949 (1997)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1998; 22(5): 765-769

    Published online Sep 25, 1998