Article
  • Effect of the Water Level Hydrated in NMMO on the Physical Properties of Cellulose Fiber in Dry Jet-wet Spinning
  • Kim DB, Lee WS, Kim BC, Jo SM, Park JS, Lee YM
  • 셀룰로오스 건습식 방사에서 NMMO의 수화물량이 섬유의 물성에 미치는 영향
  • 김동복, 이화섭, 김병철, 조성무, 박종수, 이영무
Abstract
The effects of the amount of water hydrated in N-methylmorpholine N-oxide (NMMO) in dry jet-wet spinning of cellulose was investigated in terms of rheological properties of the spinning dope and the physical properties of the fiber. At the identical polymer concentration of 12 wt%, the solution of cellulose in 90.4 wt% NMMO gave higher viscosity and higher storage modulus (G') than that in 86.7 wt% NMMO, which was more noticeable at 110℃ than at 120℃. Decrease in the hydrated water level or increase in the air-gap or spin draw ratio increased such physical properties of the fiber as birefringence, initial modulus and tensile strength. The tensile fractured morphology revealed that the fiber from NMMO containing less water gave more fibrils resulting from higher orientation. Further, it produced thicker and longer fibrils when treated with an ultrasonic generator.

셀룰로오스 방사에 있어서 N-methylmorpholine N-oxide (NMMO) 용액에 포함된 물의 량 이 섬유물성에 미치는 영향을 고찰하였다. l2wt% 고분자 농도에서 90.4wt% NMMO가86.7wt% NMMO보다 더 높은 점도와 저장탄성률을 나타내었고, 이 현상은 120℃보다 110℃에서 더욱 뚜렷하였다. 섬유의 인장강도, 초기탄성률, 복굴절률은 NMMO 용매에 수화되어 있는 물함량이 감소할수록, air-gap이 증가할수록, 방사견인비가 증가할수록 증가하였다. 섬유 파단면 조사를 통하여 물이 적은 NMMO 용액으로부터 제조한 섬유에서 고배향에 따른 microfibril들을 더 뚜렷하게 관찰할 수 있었다. 섬유의 표면에 초음파를 처리한 결과 물함량이 적을수록 굵고 긴 fibril이 발생하였다.

Keywords: cellulose fiber; N-methylmorpholine N-oxide; fibril; physical properties; water hydrates

References
  • 1. Cross CF, Bevan EJ, Beadle CBr. Patent, 8,700 (1892)
  •  
  • 2. Chegolya AS, Grinshpan DD, Burd EZ, Text. Res. J., 59(9), 501 (1989)
  •  
  • 3. Johnson DLU.S. Patent, 3,447,939 (1969)
  •  
  • 4. Cole D, Jones A, Lenzinger Berichte, 69, 73 (1990)
  •  
  • 5. Davies S, Textile Horizones, Feb., 62 (1989)
  •  
  • 6. Chun SW, Lee WS, Jo SM, Kim JD, J. Korean Fiber Soc., 29(6), 44 (1992)
  •  
  • 7. McCorsley CC, Varga JKU.S. Patent, 4,211,574 (1980)
  •  
  • 8. McCorsely CC, Varga JKU.S. Patent, 4,142,913 (1979)
  •  
  • 9. McCorsely CCU.S. Patent, 4,144,080 (1979)
  •  
  • 10. Chanzy H, Nawrot S, Peguy A, Smith P, J. Polym. Sci. B: Polym. Phys., 20, 1909 (1982)
  •  
  • 11. Maia E, Perez S, Acta Crystallogr. Sect. B-Struct. Sci., 38, 849 (1982)
  •  
  • 12. Navard P, Haudin JM, Br. Polym. J., 12, 174 (1980)
  •  
  • 13. Mortimer SA, Peguy AA, J. Appl. Polym. Sci., 60(3), 305 (1996)
  •  
  • 14. Tanaka H, White JL, Polym. Eng. Sci., 20, 949 (1980)
  •  
  • 15. Suetsugu Y, White JL, J. Appl. Polym. Sci., 28, 1481 (1983)
  •  
  • 16. Kitano T, Kataoka T, Nagatsuka Y, Rheol. Acta, 23, 408 (1984)
  •  
  • 17. Hong SM, Kim BC, Hwang SS, Kim KU, Polym. Eng. Sci., 33, 630 (1993)
  •  
  • 18. Lyoo WS, Ha WS, Kim BC, Polym. Eng. Sci.(in press)
  •  
  • 19. Chanzy H, Peguy A, Chaunis S, Monzie P, J. Polym. Sci. B: Polym. Phys., 18, 1137 (1980)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1998; 22(2): 231-239

    Published online Mar 25, 1998