Article
  • Synthesis of Conjugated Polymers from Propargylsulphonium Compounds Using Transition Metal Catalysts
  • Park SJ, Lee SS, Gal YS, Park SH
  • 전이금속촉매를 사용한 프로파길 술포늄 유도체들의 중합을 통한 공액구조 고분자의 합성
  • 박상준, 이상섭, 제갈영순, 박성하
Abstract
This paper deals with the synthesis and characterization of novel conjugated polymers via the polymerization of acetylenic sulphonium salts using various transition metal catalysts such as MoCl5, WCl6, PdCl2, PtCl2, and RuCl3. The monomers, propargylsulphonium salts were easily prepared by the simple reaction of dialkylsulfide and propargyl bromide and by the ion-exchange reaction of propargylsulphonium bromide using tetraphenylboron sodium. These monomers were easily polymerized by using above catalysts to give conjugated polymers with moderate yield. The catalytic activities of W-and Mo-based catalysts were found to be less effective than those of PdCl2, PtCl2, and RuCl3. The chemical structures of the resulting polymers are characterized to have conjugated polymer backbone system. The resulting polymers were brown End black powders, and mostly insoluble in common organic solvents.

본 논문은 새로운 공액구조 고분자 합성의 일환으로 분자내에 이온성 술포늄염을 갖는 단량체 4종을 합성하고 이들의 중합거동과 그 결과 생성된 고분자의 특성에 관한 연구내용을 다룬 것이다. 프로파길 브로마이드와 디알킬 술파이드와의 반응 및 이들의 NaBPh4를 사용한 이온교환반응을 통하여 4종의 이온성 단량체를 합성하고 여러가지 전이금속촉매 (MoCl5, WCl6, PdCl2, PtCl2, RuCl3 등)를 사용하여 중합실험을 수행하였다. 그 결과 술포늄염을 치환기로 갖는 새로운 공액구조 고분자를 비교적 높은 수율로 합성할 수 있었다. 본 중합에 있어서는PdCl2, PtCl2, RuCl3과 같은 촉매가 효과적인 반면에 일반 아세틸렌 유도체들의 중합에 매우 효과적인 것으로 알려진 W- 및 Mo-계 촉매의 활성은 떨어지는 것으로 밝혀졌다. 합성한 중합체의 구조를 여러 가지 분석장비로 확인한 결과, 본 중합체는 고분자 주쇄에 공액이중결합을 포함하고 있음을 확인할 수 있었다. 합성한 중합체들은 유기용매에 대부분 용해하지 않는 갈색 혹은 검은색의 분말상이었다.

Keywords: Conjugated Polymer; Propargyl Derivative; Sulphonium Salts; Ion-Exchange Reaction; Transition Metal Catalysts

References
  • 1. Kim SH, Kim YH, Cho HN, Kwon SK, Kim HK, Choi SK, Macromolecules, 29(16), 5422 (1996)
  •  
  • 2. Zhou PG, Blumstein A, Polymer, 37(8), 1477 (1996)
  •  
  • 3. Liaw DJ, Tsai JS, J. Polym. Sci. A: Polym. Chem., 35(3), 475 (1997)
  •  
  • 4. Euler WB, J. Phys. Chem., 91, 5795 (1987)
  •  
  • 5. Manecke G, Wille WE, Kossmehl G, Makromol. Chem., 160, 111 (1972)
  •  
  • 6. Chan HSC, Munro HS, Davies C, Kang ET, Synth. Met., 22, 365 (1988)
  •  
  • 7. Berlin A, Pagani G, Zotti G, Schiavon G, Macromol. Chem., 193, 399 (1992)
  •  
  • 8. Jiang Z, Sen A, Macromolecules, 25, 880 (1992)
  •  
  • 9. Nicolau YF, Moser P, J. Polym. Sci. B: Polym. Phys., 31, 1529 (1993)
  •  
  • 10. Burn PL, Kraft A, Baigent DR, Bradley DDC, Brown AR, Friend RH, Gymer RW, Holmes AB, Jackson RW, J. Am. Chem. Soc., 115, 10117 (1993)
  •  
  • 11. Orczyk M, Pater E, Sworakowski J, Macromol. Chem., 193, 1135 (1992)
  •  
  • 12. Ogawa T, Fomine S, TRIP, 2, 308 (1994)
  •  
  • 13. Chien JCWPolyacetylene, Academic Press, U.S.A. (1984)
  •  
  • 14. Yang JS, Hsiue GH, J. Membr. Sci., 120(1), 69 (1996)
  •  
  • 15. Aoki T, Shinohara K, Kaneko T, Oikawa E, Macromolecules, 29(12), 4192 (1996)
  •  
  • 16. Furlani A, Iucci G, Russo MV, Baerzotti A, D'Amico A, Sens. Actuators B-Chem., 8, 123 (1992)
  •  
  • 17. Xu HY, Guang SY, Xu D, Yuan DY, Bing YH, Jiang MH, Song YL, Li CF, Mater. Res. Bull., 31(4), 351 (1996)
  •  
  • 18. Masuda T, Higashimura T, Accounts Chem. Res., 17, 51 (1984)
  •  
  • 19. Masuda T, Hasegawa K, Higashimura T, Macromolecules, 7, 728 (1974)
  •  
  • 20. Gal YS, Cho HN, Choi SK, Polym.(Korea), 9(5), 361 (1985)
  •  
  • 21. Gal YS, Choi SK, J. Polym. Sci. A: Polym. Chem., 31, 345 (1993)
  •  
  • 22. Gal YS, Jung B, Lee WC, Lee HJ, Choi SK, Macromolecules, 28(6), 2086 (1995)
  •  
  • 23. Lee HJ, Choi SK, Gal YS, J. Macromol. Sci.-Pure Appl. Chem., A32, 1863 (1995)
  •  
  • 24. Lee HJ, Gal YS, Lee WC, Oh JM, Jin SH, Choi SK, Macromolecules, 28(4), 1208 (1995)
  •  
  • 25. Davidov BE, Krentsel BA, Kchutareva GV, J. Polym. Sci. C: Polym. Lett., 16, 1365 (1967)
  •  
  • 26. Kawasaki M, Masuda T, Higashimura T, Polym. J., 15, 767 (1983)
  •  
  • 27. Subramanyam A, Blumstein A, Macromolecules, 24, 2668 (1991)
  •  
  • 28. Subramanyam A, Blumstein AU.S. Patent, 5,037,916 (1991)
  •  
  • 29. Kang KL, Kim SH, Cho HN, Choi KY, Choi SK, Macromolecules, 26, 4539 (1993)
  •  
  • 30. Kim SH, Choi SJ, Park JW, Cho HN, Choi SK, Macromolecules, 27(8), 2339 (1994)
  •  
  • 31. Choi DC, Kim SH, Lee JH, Cho HN, Choi SK, Macromolecules, 30(2), 176 (1997)
  •  
  • 32. Gal YS, Macromolecules Reports, A32, 275 (1995)
  •  
  • 33. Colguhoun MH, Holton J, Thompson DJ, Twigg MVNew Pathways for Organic Synthesis, p. 383, Prenum Press, New York and London (1984)
  •  
  • 34. Gal YS, Cho HN, Choi SK, J. Polym. Sci. A: Polym. Chem., 24, 2021 (1986)
  •  
  • 35. Kim YH, Gal YS, Kim EY, Choi SK, Macromolecules, 21, 1991 (1988)
  •  
  • 36. Jang MS, Kwon SK, Choi SK, Macromolecules, 23, 4135 (1990)
  •  
  • 37. Gal YS, Choi SK, J. Polym. Sci. C: Polym. Lett., 26, 115 (1988)
  •  
  • 38. Kelly WJ, Calderon N, J. Macromol. Sci.-Chem., A9, 911 (1975)
  •  
  • 39. Cho HN, Choi SK, J. Polym. Sci. A: Polym. Chem., 23, 1469 (1985)
  •  
  • 40. Gal YS, J. Chem. Soc.-Chem. Commun., 327 (1994)
  •  
  • 41. Gal YS, Jung B, Lee WC, Choi SK, Bull. Korean Chem. Soc., 15, 267 (1994)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1998; 22(1): 74-83

    Published online Jan 25, 1998