Article
  • Synthesis of High Molecular Weight PPS and Its Properties
  • Park LS, Lee SC, Lee TH, Jeon JY
  • 고분자량 PPS의 합성 및 물성
  • 박이순, 이수창, 이태형, 전재영
Abstract
From the reaction condition study of linear high molecular weight poly(p-phenylene sulfide) (PPS), the optimum conditions were found to be monomer concentration 2.5 mol/L NMP, NaOH content as additive 0.01 ∼0.03mo1/1mol Na2S, and [Na2S]/[DCB]mol ratio 1.0l/l∼1/1.03. Under these reaction conditions, substitution of a small amount of 1,4-dichlorobenzene (DCB) with 1,2,4-trichlorobenzene (TCB), for example 0.005, 0.01, 0.02 mol TCB, gave branched type PPS with Mw of 25300, 49100, 144000g/mol, respectively. Branched type PPS which was competely soluble in 1-chloronaphthalene at 210℃ had lower Tm higher Tg and 25% lower degree of crystallinity compared to linear PPS.

선형 고분자량 PPS의 합성을 위한 중합 조건의 조사를 통하여 최적 조건은 단량체의 농도 2.5mole/L, 첨가제로서의 NaOH 투입량 0.01∼0.03mo1/1mol Na2S, 단량체 몰비 ([Na2S]/[DCB]) 1.01/1∼1/1.03로 나타났다. 선형 PPS의 중합조건을 토대로 가지형 PPS의 합성시 TCB의 함량이 증가됨에 따라 분자량(Mw)은 TCB가 Na2S 1 mole 대비 0.005, 0.01, 0.02mo1로 증가할수록 분자량(Mw)이 각각 25300, 49100 및 144000g/mo1로 현저히 증가하였다. TCB 단량체를 이용하여 210℃ 1-chloronaphthalene 용매에 가용인 성질을 가진 가지형 구조의 PPS를 합성하면 가공성의 향상(Tm의 감소), 내열성의 향상(Tg의 증가) 등의 이점이 있으며, 선형 PPS 대비 결정성의 감소는 약 25% 정도로 크게 나타나지 않았다.

Keywords: poly(p-phenylene sulfide); PPS; high molecular weight; branched type PPS

References
  • 1. Margolis JMEngineering Thermoplastics, Marcel Dekker, New York (1985)
  •  
  • 2. Sandler SR, Karo WPolymer Synthesis, vol. 3, Academic Press, New York (1980)
  •  
  • 3. Edmonds JT, Hill HWU.S. Patent, 3,354,129 (1967)
  •  
  • 4. Lenz RW, Handlovits CE, Smith HA, J. Polym. Sci., 58, 351 (1962)
  •  
  • 5. Tsuchida E, Nishide H, Yamamoto K, Yoshida S, Macromolecules, 20, 2030 (1987)
  •  
  • 6. Tsuchida E, Nishide H, Yamamoto K, Yoshida S, Macromolecules, 20, 2315 (1987)
  •  
  • 7. Tsuchida E, Suzuki F, Shouji E, Yamamoto K, Macromolecules, 27, 1057 (1994)
  •  
  • 8. Fagerburg DR, Watkins JJ, Lawrence PB, Macromolecules, 24, 4033 (1991)
  •  
  • 9. Wang YF, Hay AS, Macromolecules, 29(14), 5050 (1996)
  •  
  • 10. Stacy CJ, J. Appl. Polym. Sci., 32(32), 3959 (1986)
  •  
  • 11. Wejchan-Judek M, Perkowska B, Polym. Degrad. Stabil., 38, 261 (1992)
  •  
  • 12. Ito M, Onda M, Ona S, Inoue H, Bull. Chem. Soc. Jpn., 63, 1484 (1990)
  •  
  • 13. Campbell RW, Yelton HDU.S. Patent, 4,024,118 (1977)
  •  
  • 14. Campbell RW, Edmonds JTU.S. Patent, 4,038,259 (1977)
  •  
  • 15. Campbell RWU.S. Patent, 3,919,177 (1975)
  •  
  • 16. Iizuka Y, Iwasaki T, Katto T, Shiiki ZU.S. Patent, 4,645,826 (1987)
  •  
  • 17. Brady DG, J. Appl. Polym. Sci., 20, 2541 (1976)
  •  
  • 18. Lee SC, Park LS, Polym.(Korea), 19(5), 707 (1995)
  •  
  • 19. Lee SC, Park LS, Polym.(Korea), 19(6), 867 (1995)
  •  
  • 20. Port AB, Still RH, J. Appl. Polym. Sci., 24, 1145 (1979)
  •  
  • 21. Fahey DR, Ash CE, Macromolecules, 24, 4242 (1991)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1997; 21(3): 369-374

    Published online May 25, 1997