Note
  • On the Relationship between Viscosity and Dielectric Loss Factor of a Thermoset Resin
  • Kim H, Ahn KJ, Hong J, Char K
  • 열경화성 수지의 점도와 유전율 손실인자의 관계
  • 김홍경, 안규종, 홍종달, 차국헌
Abstract
The change of complex viscosity measured by rheometrics mechanical spectroscopy (RMS) was compared with dielectric loss factor (ε") change measured by dielectric analyzer (DEA) in a curing reaction of a thermosetting resin. Complex viscosity of the resin initially decreased with increasing temperature and then increased rapidly due to the curing reaction within the resin. ε" initially increased with increasing temperature due to the increase of ionic mobility within the resin and then decreased slowly as the curing reaction progressed. It is generally known that there is a reciprocal relationship between complex viscosity and ionic conductivity or ε", and that this relationship is valid up to the onset of the curing reaction. In present study, it is, however, found that this reciprocal relationship between ε" and complex viscosity is changed at the phase transition around 80℃, which leads to imply that the physical phase transition of the resin before curing is due to the change in ionic conductivity.

본 연구에서는 열경화성 수지의 경화반응 중의 점도변화를 rheometrics mechanical spectroscopy (RMS)로 측정하였고, dielectric analyzer (DEA)의 결과와 비교하였다. 승온조건에서 수지의 점도는 온도가 올라감에 따라 감소하다가 경화가 진행되면서 급격히 증가하는 전형적인 열경화성 수지의 점도 변화 거동을 보이는 것을 확인하였다. 유전율 손실인자(ε")는 온도가 증가하면서 이온의 모빌리티가 중가함에 따라 커지다가 경화가 진행됨에 따라 서서히 감소하였다. 일반적으로 ε"은 점도에 반비례한다는 것이 알려져 있고, 이러한 관계는 경화가 진행되면 성립하지 않음을 관찰하였다. 본 연구에서는 80℃ 부근에 존재하는 열경화성 수지의 물리적 상변화를 중심으로 ε"과 점도사이의 관계가 변하는 것을 확인하였고, 따라서 물리적 상변화 과정은 이온의 전기전도도의 변화에 의해 결정된다는 것을 알았다.

Keywords: viscosity; dielectric loss factor; ionic conductivity; RMS; DEA

References
  • 1. Kranbuehl DE, Eichinger D, Hamilton T, Clark R, Polym. Eng. Sci., 31, 56 (1991)
  •  
  • 2. Kranbuehl DE, Delos S, Yi E, Mayer J, Jarvie T, Winfree W, Hou T, Polym. Eng. Sci., 26, 338 (1986)
  •  
  • 3. Kranhuehl DE, Hood D, Rogozinski J, Limburg W, ACS Prepr., 36, 773 (1995)
  •  
  • 4. Stephan F, Boiteux G, Seytre G, Ulanski J, ACS Prepr., 36, 771 (1995)
  •  
  • 5. Senturia SD, Sheppard NF, Adv. Polym. Sci., 80, 1 (1986)
  •  
  • 6. Radhakrishnan S, Saini DR, Polym. Eng. Sci., 33, 125 (1993)
  •  
  • 7. Maffezzoli AM, Peterson L, Seferis JC, Polym. Eng. Sci., 33, 75 (1993)
  •  
  • 8. Sheppard NF, Senturia SD, Polym. Eng. Sci., 26, 354 (1986)
  •  
  • 9. Sanjana ZN, Polym. Eng. Sci., 26, 373 (1986)
  •  
  • 10. Mackinnon AJ, Jenkins SD, McGrail PT, Pethrick RA, Macromolecules, 25, 3492 (1992)
  •  
  • 11. Alig I, Lellinger D, Nancke K, Rizos A, Fytas G, J. Appl. Polym. Sci., 44, 829 (1992)
  •  
  • 12. Ellis BChemistry and Technology of Epoxy Resin, Blackie Academic & Professional, Glasgow (1993)
  •  
  • 13. Ahn KJ, Chung KM, Eom YS, Kim H, Char K, J. Korean Soc. Compos. Mat., 7, 87 (1994)
  •  
  • 14. Kim H, Eom YS, Chung KM, Ahn KJ, Char K, Polym.(Korea), 19(3), 265 (1995)
  •  
  • 15. Hwang JG, Row CG, Hwang I, Lee SJ, Ind. Eng. Chem. Res., 33(10), 2377 (1994)
  •  
  • 16. Hedvig PDielectric Spectroscopy of Polymers, John Wiley & Sons, New York (1977)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1996; 20(6): 1114-1117

    Published online Nov 25, 1996