Article
  • Prepartion of Poly(vinyl alcohol) Having Various Molecular Weights by the Low Temperature Solution Polymerization of Vinyl Acetate in Methanol
  • Lyoo WS, Ghim HD
  • 아세트산비닐의 메탄올계 저온 용액중합에 의한 다양한 분자량을 갖는 폴리비닐알코올의 제조
  • 류원석, 김한도
Abstract
Vinyl acetate (VAc) was solution-polymerized at 30, 40, and 50℃ using 2,2'-azobis(2,4-dimethylvaleronitrile) (ADMVN) as initiator and methanol as solvent, and effects of polymerization temperature, monomer to solvent ratio, and initiator concentration were investigated in terms of conversion of VAc into poly(vinyl acetate ) (PVAc), degree of branching (DB) for acetyl group of PVAc, molecular weights of PVAc and resulting PVA obtained by saponifying it with sodium hydroxide. Low polymerization temperature by adopting ADMVN proved to be successful in obtaining PVA of high molecular weight. PVAc having number-average degree of polymerization ( Pn) of 4000∼15000 was obtained at conversion of 5∼85%. Saponifying so prepared PVAc yielded PVA having Pn of 1000∼5500, and syndiotactic diad (S-diad) content of 51∼54%. DB for acetyl group was increased with increasing polymerization temperature, methanol concentration, conversion, and ADMVN concentration. The S-diad content of PVA was higher with PVA prepared from PVAc polymerized at lower temperature and at higher methanol concentration.

저온 개시제인 2,2'-azobis(2,4-dimethylvaleronitrile (ADMVN))을 개시제로, 메탄올을 중합 용매로 사용하여 30, 40 및 50℃에서 아세트산비닐 (vinyl acetate(VAc))의 용액중합을 시행하였으며, 중합온도, 단량체와 용매의 비 및 개시제의 농도가 VAc의 폴리아세트산비닐(poly(vinyl acetate) (PVAc))로의 전환율, PVAc의 아세틸기에 대한 가지화도 및 PVAc와 그의 비누화에 의해 얻어지는 PVA의 분자량에 미치는 영향을 고찰하였다. ADMVN을 이 용하여 중합온도를 낮춤으로서 고분자량의 PVA를 얻을 수 있었다. 전환율 5∼85%에서 수평균 중합도 4000∼15000의 PVAc가 합성되었다. 얻어진 PVAc를 비누화하여 제조된 PVA의 수평균 중합도는 1000∼5500 및 syndiotactic diad 함량은 51∼54%이었다. 아세틸기에 대한 가지화도는 중합 온도, 메탄올의 농도, 전환율 및 ADMVN 농도가 커질수록 증가하였다. PVA의 교대배열디아드기 함량은 낮은 중합 온도와 높은 메탄올 농도에서 중합된 PVAc로부터 얻어진 PVA의 경우에 더 큰 값을 보였다.

Keywords: vinyl acetate; poly(vinyl acetate); poly(vinyl alcohol); low temperature solution polymerization

References
  • 1. Marten FLEncyclopedia of Polymer Science and Technology, eds., H.F. Mark, N.M. Bikales, C.G. Overberger, G. Manges, and J.I. Kroschwitz, vol. 17, p. 167-180 and p. 188, John Wiley and Sons, New York (1985)
  •  
  • 2. Toyoshima KPolyvinyl Alcohol, C.A. Finch, Ed., p. 339-388, John Wiley and Sons, New York (1973)
  •  
  • 3. Sakurada IPolyvinyl Alcohol Fibers, M. Lewin, Ed., p. 3-9 and p. 361-386, Marcel Dekker, New York (1985)
  •  
  • 4. Masuda MPolyvinyl Alcohol-Development, C.A. Finch, Ed., p. 403-422 and p. 711, John Wiley and Sons, New York (1991)
  •  
  • 5. Flory PJPrinciples of Polymer Chemistry, p. 106-161, Cornell University Press, Ithaca (1953)
  •  
  • 6. Lanthier RU.S. Patent, 3,303,174 (1967)
  •  
  • 7. Sorokin AY, Kuznetsova VA, Korneva TDUSSR Patent, 507,590 (1976)
  •  
  • 8. Rozenberg ME, Nikitina SG, Khvatova GIUSSR Patent, 594,124 (1978)
  •  
  • 9. Nikolaev AF, Belogorodskaya KV, Kukushkina NP, Pigulevskaya OAUSSR Patent, 1,016,305 (1978)
  •  
  • 10. Wu TC, West JCU.S. Patent, 4,463,138 (1982)
  •  
  • 11. Kamiake K, Ueda FJapan Patent, 62-064,807 (1987)
  •  
  • 12. Yamamoto T, Seki S, Fukae R, Sangen O, Kamachi M, Polym. J., 22, 567 (1990)
  •  
  • 13. Lyoo WS, Kim BC, Lee CJ, Ha WS, Eur. Polym. J. Short Commun.in press (1996)
  •  
  • 14. Sandler SR, Karo WPolymer Synthesis, vol. 3, p. 197-199, Academic Press, New York (1980)
  •  
  • 15. Bravar M, Rolich JS, Ban N, Gnjatovic V, J. Polym. Sci. Polym. Symp., 47, 329 (1974)
  •  
  • 16. Collins HMU.S. Patent, 2,388,601 (1945)
  •  
  • 17. Wilson WKU.S. Patent, 2,473,929 (1949)
  •  
  • 18. Schouteden FLM, Tritsmans RGU.S. Patent, 2,565,783 (1951)
  •  
  • 19. Ito K, J. Polym. Sci. A: Polym. Chem., 10, 1481 (1972)
  •  
  • 20. Minsk LM, Taylor EWU.S. Patent, 2,582,055 (1952)
  •  
  • 21. Conix A, Smets J, J. Polym. Sci., 10, 525 (1953)
  •  
  • 22. Okamura S, Motoyama T, J. Polym. Sci., 17, 428 (1955)
  •  
  • 23. Bamford CH, Jenkins AD, Johnston R, J. Polym. Sci., 29, 355 (1958)
  •  
  • 24. Corenson WR, Campbell TWPreparative Methods of Polymer Chemistry, 2nd Ed., p. 238, Wiley Interscience, New York (1968)
  •  
  • 25. Ueda M, Kajitani K, Macromol. Chem., 108, 138 (1967)
  •  
  • 26. Conn WR, Neher HT, J. Polym. Sci., 5, 355 (1950)
  •  
  • 27. Imai K, Shiomi T, Oda N, Otsuka H, J. Polym. Sci. A: Polym. Chem., 24, 3225 (1986)
  •  
  • 28. Imai K, Shiomi T, Tezuka Y, Kawanishi T, Jin T, J. Polym. Sci. A: Polym. Chem., 26, 1962 (1988)
  •  
  • 29. Lyoo WSPh.D. Thesis, Seoul National University (1994)
  •  
  • 30. Lyoo WS, Kim BJ, Ha WS, J. Korean Fiber Soc., 33(3), 231 (1996)
  •  
  • 31. Yano M, Matsumoto M, Kogyo Kagaku Zasshi, 60, 763 (1957)
  •  
  • 32. Alexandru L, Opris M, Vyskomol. Soed., 3, 306 (1961)
  •  
  • 33. Sakurada I, Sakaguchi Y, Hashimoto K, Kobunshi Kagaku, 18, 694 (1961)
  •  
  • 34. Nakajima A, Kobunshi Kagaku, 11, 142 (1954)
  •  
  • 35. Marten FL, Zavnut CWPolyvinyl Alcohol-Development, C.A. Finch, Ed., p. 49-51, John Wiley and Sons, New York (1991)
  •  
  • 36. Lyoo WS, Ha WS, J. Polym. Sci. PC, 8 (1996)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1996; 20(5): 860-869

    Published online Sep 25, 1996