Article
  • Conformational Analysis of Poly(organophosphazene) by Rotational Isomeric State Model
  • Ryoo DS, Lee DC
  • 회전이성체 모델에 의한 Poly(organophosphazene)의 분자형태
  • 유동선, 이동주
Abstract
The conformation of poly[bis(phenylphenoxy)Phosphazene](PBPPP) has been analyzed on the dimer structure by using the rotational isomeric state model. The nonbonding interaction energies for each rotational isomers being formed by every 10 degree incremental rotation from 0 to 360 degree have been estimated by the 6-12 Lennard-Jones potential and the Coulombic term. The surfaces of conformational energy and statistical weight thus obtained revealed distributions of low potential energy well over very limited area, which implies the torsional motion of the backbone chain is suppressed. The persistence length q estimated from the molecular dimension ( 2>o/M)1/2 was found as 4.15 nm and was comparable with 4.20 nm obtained from solution method.

Poly[bis(phenylphenoxy)phosphazene] 주연쇄의 회전에 수반되는 에너지변화를 추적하여 분자형태를 규명하였다. 이량체 구조를 모델로 하여 주연쇄를 0℃에서 360℃까지 10℃씩, 그리고 주연쇄 회전각이 변할 때마다 각 5°씩 치환체를 독립적으로 회전시키며 6-12 Lennard-Jones 및 Coulombic potential 에너지를 산출하여 conformational energy surface를 얻었다. Trans, gauch+ 및 gauch- 근처에 최저 에너지들이 불연속적으로 분포되어 있는 것으로 미루어 주연쇄의 torsional motion이 자유롭지 못한 것을 확인하였다 가장 높은 확률로 존재하는 최저 에너지 준위의 회전이성체 분자크기를 Monte Carlo 법으로 결정하고, 이 값으로부터 지속장(persistence length) q값이 4.15 nm임을 밝혔다. 이 값은 비섭동상태에서 실험적으로 구한 4.20 nm와 비교적 잘 일치하였다.

Keywords: poly(organophosphazene); rotational isomeric state model; persistence length

References
  • 1. Allcock HR, Kugel RL, JACS, 87, 4216 (1965)
  •  
  • 2. Singler RE, Willingham RA, Lenz RW, Furukawa A, Finkelmann IH, Macromolecules, 20, 1727 (1987)
  •  
  • 3. Thakuv M, Macromolecules, 21, 661 (1988)
  •  
  • 4. Marco PD, Giro G, Lora S, Gleria M, Mol. Cryst. Liq. Cryst., 188, 439 (1985)
  •  
  • 5. Kajiwara M, J. Mater. Sci., 23, 1360 (1988)
  •  
  • 6. U.S. Patent, 4,251,215
  •  
  • 7. U.S. Patent, 4,543,379
  •  
  • 8. Lee DC, Polym.(Korea), 16(3), 351 (1992)
  •  
  • 9. Allcock HR, Allen RW, Meister JJ, Macromolecules, 9, 950 (1975)
  •  
  • 10. Pitzer KS, Adv. Chem. Phys., 2, 59 (1959)
  •  
  • 11. Ketelaar JChemical Constitution, p. 92, Elsevier, New York (1958)
  •  
  • 12. Scott RA, Scheraga HA, J. Chem. Phys., 42, 2209 (1965)
  •  
  • 13. Braut DA, Miller WG, Flory PJ, J. Mol. Biol., 23, 47 (1967)
  •  
  • 14. Bondi A, J. Phys. Chem., 68, 441 (1964)
  •  
  • 15. Smyth CPDielectric Behaviour and Structure, p. 289-311, McGraw-Hill, New York (1955)
  •  
  • 16. Allen RW, Allcock HR, Macromolecules, 9, 956 (1976)
  •  
  • 17. Flory PJStatistical Mechanics of Chain Molecules, John Wiley and Sons, New York (1969)
  •  
  • 18. Iora RJ, Magill JH, Macromolecules, 23, 2359 (1990)
  •  
  • 19. Saiz E, J. Polym. Sci. B: Polym. Phys., 25, 1565 (1987)
  •  
  • 20. Hario TY, Teramoto A, Sato TH, Norisuye T, Masuda T, Higasimura TN, Polym. J., 23, 925 (1991)
  •  
  • 21. Oyama T, Shiokawa K, Baba K, Polym. J., 13, 167 (1981)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1996; 20(1): 57-62

    Published online Jan 25, 1996