Article
  • Ethylene Polymerization over Multimetallic Catalysts : (Ⅰ) Effect of Catalyst Composition
  • Kim I
  • 다중금속 촉매에 의한 에틸렌 중합 : (Ⅰ) 촉매조성의 영향
  • 김일
Abstract
Highly active catalysts to synthesize the high-density polyethylene of broad molecular weight distribution (MWD) have been prepared. Catalysts were composed of magnesium chlorode, tetrahydrofuran (THF, electron donor) and at least two compounds from TiC14,VCl3, and ZrC14. In order to prepare the catalyst in a simple and reproducible way, precipitation method was adopted. In this method, solid catalyst is separated from the solvate complex containing electron donor and various metallic components. Slurry-phase polymerization was carried out at 50℃ and 3 attn over 12 catalysts prepared according to different compositions. For the catalyst prepared with TiC14/ZrCl4/THF/MgCl2 and TiCl4/VCl3/THF/MgCl2 maximum activities (177∼295 kg PE/g-metal h) were recorded when Ti was the major component. Catalyst system composed of VCl3/ZrC14/THF/MgC14 without TiC14, which has been used as the main component in conventional Ziegler-Natta catalyst, showed a typical volcano plot showing high activity (224 kg PE/g-(V+Zr)) when [V]/[Zr]=1. Thermal property of HDPE was investigated by DSC and MWD was estimated by GPC and/or melt flow radio (MFR). MWD of HDPE synthesized by monometallic TiCl4/THF/MgCl2 catalyst was 3.6 on the other hand, HDPE by multimetallic catalysts showed broad MWD, i.e. MWD of HDPE by TiCl4/ZrCl4/THF/MgCl2 ([Ti]/[Zr]=1/1) and VCl3/ZrCl3/THE/MgCl2 ([V]/[Zr]=1/1) was 6.5 and 8.4, respectively. MWD of HDPEfby TiCl4/VCl3/THE/MgCl2 ([Ti]/[Zr]=1/1) catalyst was even broader (14.8). The formation of multimetallic complexes was confirmed by FTIR and X-ray diffraction analysis.

넓은 분자량분포(MWD)의 폴리에틴렌을 제조할 수 있는 고활성 촉매를 합성하였다. 촉매의 합성에 사용된 성분은 염화마그네슘과 전자공여체 화합물을 포함하여 사염화티탄, 사염화지르코늄, 삼염화바나븀 중에서 최소한 두가지로 구성되어 있다. 이와 같은 다중금속으로 구성된 촉매를 간단하면서 재연성있게 합성하기 위하여 금속성분들을 전자공여체에 용해시킨 후 침전제로 침전시켜 고체로 분리하는 재침전법을 사용하였다. 각각의 금속성분을 달리하여 합성된 12가지의 촉매로 에틸렌의 슬러리 중합을 3기압, 50℃에서 행하였다. 사염화티탄과 사염화지르코늄, 사염화티탄과 삼염화바나듐으로 이루어진 계의 경우 티탄이 주성분일 때 활성이 대단히 높았으며 (177∼295kg PE/g-M h), 삼염화바나듐이나 사염화지르코늄이 주성분일 때에는 활성이 높지 않았다. 비균질 Ziegler-Natta 촉매계에서 가장 보편적으로 사용되는 사염화티탄을 첨가하지 않은 촉매계에서는 [V]/[Zr]=1일 때 활성이 224kg PE/g-(V+Zr) h로 높은 반면 다른 비율에서는 낮은 전형적 인 화산형 플롯이 얻어졌다. 이와 같이 합성된 HDPE의 열적 성질을 DSC를 이용하여 분석하였고, 분자량분포를 GPC와 용융지수비를 이용하여 측정하였다. 사염화티탄만을 촉매성분으로 사용한 TiCl/THF/MgCl2촉매로 합성된 HDPE의 MWD는 3.6으로 좁았으나, 다중금속촉매계로 합성된 HDPE의 경우 MWD가 넓어져 TiCl4/ZrC14/THF/MgCl2 ([Ti]/[Zr]=1/1)촉매의 경우 MWD=6.5, VC13/ZrCl4/THF/MgCl2 ( [V]/[Zr]=1/1)촉매의 MWD=8.4이었으며 , 티탄과 바나듐으로 구성된 TiC14/VC13/THF/MgCl2 ([Ti]/[V]=1/1)촉매계의 MWD=14.8로 대단히 넓게 나타났다. 다중금속 착물의 형성은 적외선 홉광분석과 X선 회절분석법과 같은 방법에 의해 확인할 수 있었다.

Keywords: multimetallic catalyst; ethylene polymerization; broad molecular distribution

References
  • 1. Kim I, Catalysis, 9(1), 27 (1993)
  •  
  • 2. McLanghlin KW, Hoeve CAJTransition Metal Catalyzed Polymerization, R.P. Quirk, ed., p. 337, Cambridge Univ. Press (1988)
  •  
  • 3. Bohm LL, Polymer, 19, 545 (1978)
  •  
  • 4. Bohm LLCatalytic Polymerization of Olefins, Keii T, Soga B, eds., p. 29, Kodansha (1986)
  •  
  • 5. Bohm LL, Polymer, 19, 561 (1978)
  •  
  • 6. Schramm KD, Karol FJU.S. Patent, 5,070,055 to Union Carbide (1991)
  •  
  • 7. Kenji N, Norio TEuropean Patent, 294,168 to Idemitsu Petrochem. Co. (1988)
  •  
  • 8. Carrick WL, J. Am. Chem. Soc., 82, 1502 (1960)
  •  
  • 9. Karol FJ, J. Am. Chem. Soc., 83, 2654 (1961)
  •  
  • 10. Jacob HW, Z. Anorg. Allg. Chem., 427, 75 (1976)
  •  
  • 11. Toshiichi C, Mitsuhiro M, Yozo KJpn. Kokai Tokkyo Koho 02,163,103 to Tosoh Co. (1990)
  •  
  • 12. Toshiyuki T, Kenji S, Takashi UEuropean Patent, Appl. 436,399 to Mitsui Petrochem. Co. (1991)
  •  
  • 13. Lo FY, Nowlin TE, Shirodka PPU.S. Patent, 5,032,562 to Mobil Oil Co. (1991)
  •  
  • 14. Schell JG, Meiske LA, Marchand GRU.S. Patent, 5,045,612 to Dow Chemical Co. (1991)
  •  
  • 15. Schramm KD, Karol FJU.S. Patent, 5,070,055 to Union Carbide Chemicals and Plastics Tech. Co. (1991)
  •  
  • 16. Kim I, Kim JH, Woo SI, J. Appl. Polym. Sci., 39, 837 (1990)
  •  
  • 17. Nowlin TE, Kissin YV, Wagner KP, J. Polym. Sci. A: Polym. Chem., 26, 755 (1988)
  •  
  • 18. Karol FJ, Cann KJ, Wagner BETransition Metals and Organometallics for Catalysts for Olefin Polymerization, W. Kaminsky and H. Sinn, Eds., p. 149, Springer-Verlag, Berlin (1988)
  •  
  • 19. Barbe PC, Cecchin G, Noristi L, Adv. Polym. Sci., 81, 1 (1986)
  •  
  • 20. Keszler B, Bodor G, Simon A, Polymer, 21, 1037 (1984)
  •  
  • 21. Chien JCW, Wu JC, Kuo CI, J. Polym. Sci. A: Polym. Chem., 21, 737 (1983)
  •  
  • 22. Zucchini U, Cecchin G, Adv. Polym. Sci., 51, 101 (1983)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1996; 20(1): 33-43

    Published online Jan 25, 1996