Article
  • Performance Improvement of Glass Fiber/Poly(butylene terephthalate) Composite by Silane Coupling Agents
  • Jang JS, Kim HS
  • 실란커플링제에 의한 유리섬유/폴리부털렌테레프탈레이트 복합재료의 물성향상
  • 장정식, 김학성
Abstract
In order to improve the mechanical properties of glass fiber (GF)/poly(butylene terephthalate) (PBT) composite, optimal manufacturing temperature and glass surface treatment condition were studied. RC-2, γ-APS, γ-MPS, and styryl silane were used for promotion of the interfacial adhesion of the composite. In the case of untreated composite, the maximum flexural strength of the composite was obtained at 250℃. RC-2 silane had better efficiency in enhancing the mechanical properties than any other silanes. RC-2 silane, which was determined as the most efficient interfacial adhesion promoter of GF/PBT composite, was applied at various silane concentrations to find the optimum condition of glass surface treatment. When small amount of amino-functional silanes was added to RC-2 silane and γ-MPS silane, the interlaminar shear strength and the flexural strength of the composite were increased by the amine-functional catalytic effects on the siloxane bond formation. Styryl silane showed more enhancement of the mechanical strength of mixed silane treated glass fiber/PBT composite than γ-APS.

유리섬유/폴리부틸렌테레프탈레이트 복합재료의 물성향상을 위하여 복합재료 최적 제조 온도와 유리섬유 표면의 최적 처리조건을 구하고자 하였다. RC-2 실란, γ-APS, γ-MPS,스티릴 실란을 사용하여 유리섬유의 표면을 처리하였으며 각각의 물성을 비교하였다. 유리섬유 미처리시 250℃의 제조 온도에서 최고 물성을 보였으며, 4종류의 실란커플링제 중에는 폴리설파이드 계통의 RC-2 실란이 가장 효과적이었다. RC-2 실란처리 농도를 변화시켜 유리 섬유 표면 처리의 최적 조건을 구하였으며 아울러 아미노 계통의 실란커플링제인 γ-APS와 스티릴 실란을 γ-MPS와 RC-2 실란에 소량 첨가하여 그 물성향상 효과를 고찰하였다. 이때 아미노 실란의 실록산 결합에 대한 촉매 효과에 의하여 복합재료의 기계적 물성이 향상되는 정도에 있어서 γ-APS 보다 스티릴 실란이 더 효과적이었다.

Keywords: glass fiber; poly(butylene terephthalate); silane coupling agents; surface treatment

References
  • 1. Carlsson LAThermoplastic Composite Materials, Elsevier Science Publishers (1991)
  •  
  • 2. Cogswell FNThermoplastic Aromatic Polymer Composite, Butterworth-Heinemann (1992)
  •  
  • 3. Brydson JAPlastic Materials, Butterworth Scientific (1989)
  •  
  • 4. Vaughan DJ, Peek RC, Creech MH39th Ann. Conf. Reinforced Plastics/Composites Institute, SPI, Inc., January 16-19 (1984)
  •  
  • 5. Takahara A, Magome T, Kajiyama T, J. Polym. Sci. B: Polym. Phys., 32(5), 839 (1994)
  •  
  • 6. Folkes MJ, Wong WK, Polymer, 28, 1309 (1987)
  •  
  • 7. Yue CY, Quek MY, J. Mater. Sci., 29(9), 2487 (1994)
  •  
  • 8. Piggott MR, Carbon, 27(5), 657 (1989)
  •  
  • 9. Han CD, Sandford C, Yoo HJ, Polym. Eng. Sci., 18(11), 849 (1978)
  •  
  • 10. Ishida H, Miller JD38th Ann. Conf. Reinforced Plastics/Composites Institute, SPI, Inc., February 7-11 (1983)
  •  
  • 11. Al-Moussawi H, Drown EK, Drzal LT, Polym. Compos., 14(3), 195 (1993)
  •  
  • 12. Ishida H, Koenig JL, Polym. Eng. Sci., 18(2), 128 (1978)
  •  
  • 13. Chiang CH, Koenig JL, J. Colloid Interface Sci., 83(2), 361 (1981)
  •  
  • 14. Graf RT, Koenig JL, Ishida H, Anal. Chem., 56, 773 (1984)
  •  
  • 15. Ishida H, Nakada K42nd Ann. Conf. Composites Institute, SPI, Inc., February 2-6 (1987)
  •  
  • 16. Plueddemann EP, Stark GL35th Ann. Tech. Conf. Reinforced Plastics/Composites Institute, SPI, Inc. (1980)
  •  
  • 17. Plueddemann EP, Pape PG40th Ann. Conf. Reinforced Plastics/Composites Institute, SPI, Inc., Jan.28 - Feb.1 (1985)
  •  
  • 18. Plueddemann EPSilane Coupling Agents, Plenum Press, New York (1982)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1995; 19(5): 593-605

    Published online Sep 25, 1995