Article
  • Characterization and Effect on Branch Concentration of Polyethylene Obtained from Hydrogenation of Polybutadiene
  • Cho UR
  • 폴리부타디엔의 수소화로 얻어진 폴리에털렌의 가지도에 따른 특성과 영향
  • 조을룡
Abstract
Three kinds of polyethylenes(PE's) were obtained from hydrogenation of three polybutadienes which have vinyl unit of 2%, 6%, and 9%, respectively. Hydrogenation of polybutadiene was investigated by solid state NMR and IR. According to the differences of the ethyl branch concentration by hydrogenation of vinyl unit, they were identified as PE(2), PE(6), PE(9), and their characterizations were examined on effect of branch concentration given from vinyl unit of different polybutadienes. α, β, γ-Relaxation points of polyethylene increased in order of PE(9) < PE(6) < PE(2). Crystal lattices increased going from PE(2), PE(6), PS(9). In the tensile test, PE(9) showed the highest breaking stress due to the strain hardening effect.

Vinyl unit의 함량이 각각 2%, 6%, 9%를 포함하고 있는 3종류의 polybutadiene을 수소화하여 3종류의 polyethylene(PE)을 얻었다. Polyethylene의 생성은 solid state NMR과 IR로 화인하였고, vinyl unit의 수소화에 의한 ethyl branch concentration에 따라 PE(2), PE(6), PE(9)이라 구분하였으며 polybutadiene의 vinyl unit로 부터 얻어진 ethyl branch의 수에 따른 특성을 조사하였다. Polyethylene의 α, β, γ-relaxation points는 PE(9) < PE(6) < PE(2)순으로 약간의 증가를 보였고, crystal lattice는 PE(2) < PE(6) < PE(9)순으로 증가하였으며, 인장강도 시험에서 PE(9)은 strain hardening effect에 의해 가장 높은 breaking stress를 보여 주었다.

Keywords: polyethylene; polybutadiene; hydrogenation; branch concentration

References
  • 1. 정기현플라스틱 이론과 실제, p. 132, 보진제 (1975)
  •  
  • 2. RAchapudy H, Smith GG, Raju VR, Graessly WW, J. Polym. Sci., 17, 1211 (1979)
  •  
  • 3. House HModern Synthetic Reactions, p. 248, W.A. Bengamin, Inc., Menlo Park, CA (1972)
  •  
  • 4. Harwood H, Russell DB, Verthe JA, Zymonas J, Makromol. Chem., 163, 1 (1972)
  •  
  • 5. Mango L, Lenz RW, Makromol. Chem., 163, 13 (1973)
  •  
  • 6. Sanui K, Macknight WJ, Lenz RW, J. Polym. Sci. C: Polym. Lett., 11, 427 (1973)
  •  
  • 7. Firer EPh.D. Dissertation, Univ. of Akron (1973)
  •  
  • 8. Ast W, Zatt C, Kerber R, Makromol. Chem., 180, 315 (1979)
  •  
  • 9. Nang T, Katabe Y, Minouro Y, Polymer, 17, 117 (1976)
  •  
  • 10. Chen H, J. Polym. Sci. C: Polym. Lett., 15, 271 (1979)
  •  
  • 11. Shahab Y, Basheer RA, J. Polym. Sci. A: Polym. Chem., 17, 910 (1979)
  •  
  • 12. Kozulla RPrivite Communication, Univ. of Akron (1988)
  •  
  • 13. Spevacek J, Polymer, 19, 1149 (1978)
  •  
  • 14. Kroschwitz JIEncyclopedia of Polymer Science and Engineering, Ed. by, H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges, vol. 7, p. 543, Wiley-Interscience (1988)
  •  
  • 15. Boyer RF, Rubber Chem. Technol., 36, 1303 (1963)
  •  
  • 16. McCrum NG, Read BE, Williams GAn Elastic and Dielectric Effects in Polymeric Solids, p. 355, John Wiley & Sons, Inc., N.Y. (1965)
  •  
  • 17. McKenna LW, Kajiyama T, Macknight WJ, Macromolecules, 2, 53 (1969)
  •  
  • 18. Stehling FC, Mandelkern L, Macromolecules, 2, 242 (1970)
  •  
  • 19. Kline DE, Sauer JA, Woodward AE, J. Polym. Sci., 22, 456 (1959)
  •  
  • 20. Boyer RFAddress to the Southeastern Texas American Chemical Society Polymer Group, Houston, Texas, Feb., 16 (1966)
  •  
  • 21. Bohn VL, Kolloid Z., 194, 10 (1964)
  •  
  • 22. Schatzki TFPreprints of Amer. Chem. Soc., Div. Polym. Chem., 6, 646 (1965)
  •  
  • 23. Richardson M, Flory PJ, Jackson JB, Polymer, 4, 221 (1963)
  •  
  • 24. Baker C, Mandelkern L, Polymer, 7, 7 (1966)
  •  
  • 25. Bodoly D, Wunderlich B, J. Polym. Sci. A: Polym. Chem., 2, 25 (1966)
  •  
  • 26. Perkins WG, Porter RS, J. Mater. Sci., 12, 2355 (1977)
  •  
  • 27. Bowden PB, Young RJ, J. Mater. Sci., 9, 2034 (1974)
  •  
  • 28. Samuels RJ, J. Macromol. Sci.-Phys., B4, 701 (1970)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1995; 19(5): 535-542

    Published online Sep 25, 1995