Article
  • Interactions of Polymer Surfaces Containing Functional Groups with Blood Components
  • Jung HW, Lee JH, Kang IK
  • 화학관능기가 도입된 고분자표면과 혈액성분과의 상호작용
  • 정희원, 이진호, 강인규
Abstract
Polyethylene films were treated by corona discharge, followed by acrylic acid (-COOH) grafting. The films with different functional groups were prepared by a substitution reaction of carboxylic acid groups to hydroxyl (-CH2OH)or amide (-CONH2)groups. Surface characterization of the prepared films was carried out by electron spectroscopy for chemical analysis (ESCA), Fourier-transform attenuated total reflectance infrared spectroscopy (FT-ATRIR) and contact angle goniometer. The interactions of different functional group-grafted polyethylene surfaces with blood components were investigated to evaluate the influence of functional groups on blood compatibility. As a result, PE-COOH surface strongly stimulated the activation of plasma proteins and platelets compared to PE surface, resulting in an increased thrombus formation. However, the activation of plasma proteins and platelets on PE-OH and PE-CONH2 surfaces was almost the same as that on PE surface. Meanwhile, blood mononuclear cells adhered on PE-OH surfaces were less activated than those on the others.

폴리에틸렌 필름을 코로나방전 처리하여 아크릴산을 그라프트 시키고 그라프트된 아크릴산을 치환반응시켜 수산기 및 아미드기로 각각 전환하였다. 각 관능기가 도입된 폴리에틸렌의 표면분석은 electron spectroscopy for chemical analysis (ESCA), Fourier-transform attenuated total reflectance infrared spectroscopy (FT-ATRIR), 접촉각측정기로 행하였다. 관능기가 도입된 폴리에틸렌과 혈액성분과의 상호작용을 조사한 결과 PE-COOH 표면은 혈장단백질과 혈소판의 활성화를 자극하여 높은 혈전형성을 야기시켰다. 그러나 PE-OH 및 PE-CONH2는 PE와 비슷한 정도로 혈장단백질과 혈소판을 활성화 시켰다. 한편, PE-OH상에서는 blood mononuclear cells이 점착하더라도 활성화가 억제되었다.

Keywords: polyethylene; corona discharge; functional groups; blood compatibility

References
  • 1. Hoffman ASBiomaterials: Interfacial Phenomena and Applications, eds. by S.L. Cooper and N.A. Peppas, p. 3, ACS 199, ACS Press, Washington, D.C. (1982)
  •  
  • 2. Kim SW, Feijen JCRC Critical Reviews in Biocompatibility, Vol. 1, p. 215, CRC Press, Boca Raton (1985)
  •  
  • 3. Brash JL, Uniyal S, J. Polym. Sci. Polym. Symp., 66, 377 (1979)
  •  
  • 4. Ikada YPolymers in Medicine, ed. by K. Dusek, APS Series 57, p. 103, Springer Verlag (1984)
  •  
  • 5. Chang SK, Hum OS, Moscarello MA, Neumann AW, Zingg W, Leutheusser MJ, Reugsegger B, Med. Progr. Technol., 5, 57 (1977)
  •  
  • 6. Nyilas E, Morton WA, Lederman DM, Chiu TH, Cumming RD, Trans. Am. Soc. Artif. Intern. Organs., 21, 55 (1975)
  •  
  • 7. Sawyer PN, Pate JW, Am. J. Physiol., 175, 113 (1953)
  •  
  • 8. Bruck SD, J. Biomed. Mater. Res., 6, 173 (1972)
  •  
  • 9. Okano T, Nishiyama S, Shinohara I, Akaike T, Sakurai Y, Polym. J., 10, 223 (1978)
  •  
  • 10. Baszkin A, Lyman DJ, J. Biomed. Mater. Res., 14, 393 (1980)
  •  
  • 11. Coleman DJ, Gregonis ED, Andrade JD, J. Biomed. Mater. Res., 16, 381 (1982)
  •  
  • 12. Lee JH, Jung HW, Kang IK, Lee HB, Biomaterials, 15, 705 (1994)
  •  
  • 13. Byun KH, Kang IK, Lim HS, Lee JH, Lee HB, Polym.(Korea), 17(2), 186 (1993)
  •  
  • 14. Park SD, Kang IK, Kim KH, Lee YM, Sung YK, Polym.(Korea), 18(5), 868 (1994)
  •  
  • 15. Suh ESPh.D. Dissertation, Kyungpook National University, June (1993)
  •  
  • 16. Suzuki M, Kishida A, Iwata H, Ikada Y, Macromolecules, 19, 1804 (1986)
  •  
  • 17. Kang IK, Kwon BK, Lee JH, Lee HB, Biomaterials, 14, 787 (1993)
  •  
  • 18. Hoffman AS, J. Biomed. Mater. Res., 20, 9 (1986)
  •  
  • 19. Mason RG, Progr. Hemostatis Thromb., 1, 141 (1972)
  •  
  • 20. Horbett TA, Schway MB, Ratner BD, J. Colloid Interface Sci., 104, 28 (1985)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1995; 19(1): 117-126

    Published online Jan 25, 1995