Article
  • Controlled Drug Release from Poly(ethylene oxide)/poly(ε-caprolactone) Blends via Pseudo-Zeroth Order Kinetics
  • Yoo Y, Chung CY
  • Poly(ethylene oxide)/poly(ε-caprolactone) 혼합 매트릭스로부터 Pseudo Zeroth Order Kinetic에 의한 약물 방출 조절
  • 유영태, 정채열
Abstract
Release characteristics of model drug(p-nitroaniline) (p-NA) from poly(ethylene oxide)(PEO)/biodegradable poly(ε-caprolactone) (PCL) blends matrix was studied with respect to composition, thickness and morphology of the film. Fractional cumulative release(% Q) of the drug showed a linear relationship with (release time)0.5 for PCL matrix, whereas the exponent increased to 0.72∼0.80, 0.78∼0.82, 0.82∼0.85, 0.91∼0.94 on PEO(20)/PCL(80)/PEO-b-PCL(2), PEO(30)/PCL(70)/PEO-b-PCL(3) PEO(40)/PCL(60)/PEO-b-PCL(4) and PEO(50)/PCL(50) /PEO-b-PCL(5) blends, respectively, approaching a zeroth order kinetic. This fact may be attributed to the selective dissolution of PEO from the matrix, resulting in a porous structure with expanded solid/liquid interface. The system was analyzed by a drug release model derived by an analogy of an electric circuit.

생분해성 지방족 폴리에스터인 poly(ε-caprolactone)(PCL)과 친수성 고분자인 poly(ethylene oxide)(PEO)의 혼합 매트릭스에서 PEO의 함량, 필름두께 및 모폴로지에 따른 모델 약물인 p-nitroaniline(p-NA)의 방출거동을 조사하였다. PCL고부터 p-NA의 방출거동은 비례 누적 방출량(%Q)이 시간의 제곱근에 비례하는데 비해 PEO와 상용화제(PEO-b-PCL)를 혼합할 경우 20wt% PEO에서 시간의 0.72-0.80승에, 30wt%에서는 0.78∼0.82승에, 40wt%에서는 0.82∼0.85승에, 50wt%에서는 0.91∼0.94승에 비례하여 점차 zeroth-order kinetics로 접근하는 경향을 보였다. 이와같은 현상은 블렌드에서 PEO의 선택적인 침출로 다공성 구조를 형성하여 고/액 경계면이 지속적으로 증가하는데 기인한 것으로 전기회로 개념을 도입하여 설정한 총괄 방출속도모델을 유도하여 해석 하였다.

References
  • 1. Bailey WJ, Tirrell DAMacromolecules as Drug and as Carriers for Biologically Active Materals, pp. 42-49, The N.Y. Academy of Science, N.Y. (1985)
  •  
  • 2. Rhine WD, Hsieh DST, Langer R, J. Pharm. Sci., 69, 265 (1980)
  •  
  • 3. Langer R, Brem H, Tapper D, J. Biomed. Mater. Res., 15, 267 (1981)
  •  
  • 4. Heller J, Biomaterials, 1, 1 (1980)
  •  
  • 5. Heller J, J. Polym. Sci. C: Polym. Lett., 18, 617 (1980)
  •  
  • 6. Benedict CV, J. Appl. Polym. Sci., 28, 327 (1983)
  •  
  • 7. Huang S, Mark HEncyclopedia of Polymer Science and Technology, Vol. 2, pp. 237-257, Wiley-Interscience, New York (1989)
  •  
  • 8. Tabushi I, J. Polym. Sci. C: Polym. Lett., 13, 447 (1975)
  •  
  • 9. Greham NN, Br. Polym. J., 10, 260 (1978)
  •  
  • 10. Vergnaud JMLiquid Transport Process in Polymeric Materials, pp. 221-353, Prentice Hall, Inc., Englewood Cliffs, New Jersey (1991)
  •  
  • 11. Liversidge G, Nair M, Tan JResearch Proposal on Parentral Polymeric Nanoparticulate Drug Delivery, Presented to the Sterling Drug Company, March 17 (1988)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1994; 18(1): 103-112

    Published online Jan 25, 1994