Article
  • Effect of Hydrogen on Ethylene Polymerization over High-activity Catalysts
  • Kim I
  • 고활성 촉매에 의한 에틸렌의 중합에서 수소의 영향
  • 김일
Abstract
Slurry-phase polymerization of ethylene has been carried out over various high-activity MgCl2-supported catalysts cintaining mono- or di-ester. The Concentration of active sites was estimated using the data of molecular weight variation on polymerization time. The concentration of active sites was 0.257∼0.481 mol/mol Ti which agrees with that obtained by the adsorption method of carbon monoxide. The effect of hydrogen on polymerization rata mild molecular weight of polymer has been intvestigated by varying the amount of hydrogen added. The polymerization rate decreased according to relation RPH=RPO/(i+β[H2]0.5), in which is in the range of 0.27∼0.35cm Hg0.5. However, the addition of hydrogen had little influence on deactivation of active sites. The molecular weight of polymer decreased according to the relation(MnO/MnH) ∝ [H2]0.5, indicating that the dissociatively adsorbed hydrogen atom paticipates in transfer reaction. The rate constant of chain transfer by hydrogen was estimated to be in the range of 1.94×10-3∼4.33×10-3atm0.5s-1 from the detailed kinetic study.

모노에스테르 및 디에스테르를 함유한 여러 가지 연화마그네슘 담지 고활성 촉매를 이용하여 에틸렌의 슬러리상 중합을 행하였다. 중합시간에 따른 고분자의 분자량 변화에 대한 자료를 이용하는 전래의 방법에 의해 활성점농도를 측정하였다. 활성점농도는 0.257∼0.481 mo1/mol Ti이었으며 일산화탄소 흡착법으로 구한 값과 유사하였다. 수소의 첨가가 중합속도 및 분자량에 미치는 영향을 조사하기 위하여 수소의 참가량을 달리하여 중합을 행하였다. 수소의 첨가에 따라 중합속도가 RPH=RPO(1+β[H2]0.5) 관계식에 따라 감소하였으며, β=0.27∼0.35cm Hg-0.5이었다. 그러나, 수소의 첨가가 활성점의 바활성화에는 큰 영향을 미치지 않았다. 수소량에 따른 분자량의 감소는 (MnO/MnH)∝[H2]0.5의 비례관계식을 따랐으며, 이는 해리흡착된 수소원자가 연쇄이동에 참여함을 의미한다. 수소원자가 연쇄이동에 참여할 대 수소에 의한 연쇄이동속도상수(ktr,H)는 1.94×10-3∼4.33×10-3atm0.5s-1임을 알 수 있었다.

References
  • 1. Guastella G, Giannini U, Makromol. Chem. Rapid Commun., 4, 519 (1983)
  •  
  • 2. Keii T, Doi Y, Suzuki F, Soga K, Tamura M, Murata M, Makromol. Chem., 185, 1537 (1984)
  •  
  • 3. Mason CD, Schaffhauser RJ, J. Polym. Sci., 9, 661 (1971)
  •  
  • 4. Boucheron B, Eur. Polym. J., 11, 131 (1975)
  •  
  • 5. Chien JCW, Flu Y, J. Polym. Sci. A: Polym. Chem., 25, 2881 (1987)
  •  
  • 6. Natta G, Adv. Catal., 11, 1 (1959)
  •  
  • 7. Pijpers EM, Roest BC, Eur. Polym. J., 8, 1151 (1972)
  •  
  • 8. Kim I, Woo SI, Polym. Bull., 22, 239 (1989)
  •  
  • 9. Kim I, Choi HK, Han TK, Woo SI, J. Polym. Sci. A: Polym. Chem., 30, 2263 (1992)
  •  
  • 10. Kim I, Woo SI, Polym.(Korea), 14(6), 653 (1990)
  •  
  • 11. Boucher DG, Parsons IW, Haward RN, Makromol. Chem., 175, 3461 (1974)
  •  
  • 12. Gardner K, Parsons IW, Harward RN, J. Polym. Sci. A: Polym. Chem., 16, 1683 (1978)
  •  
  • 13. Bohm LL, Polymer, 19, 545 (1978)
  •  
  • 14. Bohm LL, Polymer, 19, 553 (1978)
  •  
  • 15. Grievson BM, Makromol. Chem., 84, 93 (1965)
  •  
  • 16. Franz H, Meyer H, Reichert KH, Polymer, 22, 227 (1980)
  •  
  • 17. Scholte TG, Meijerink NLJ, Schoffeleers HM, Brands AMG, J. Appl. Polym. Sci., 29, 3763 (1984)
  •  
  • 18. Yang WL, Hsu CC, J. Appl. Polym. Sci., 28, 145 (1983)
  •  
  • 19. Meyer H, Reichert KH, Angew. Makromol. Chem., 57, 221 (1977)
  •  
  • 20. Galli P, Luciani L, Cecchin G, Angew. Makromol. Chem., 94, 63 (1981)
  •  
  • 21. Soga K, Terano M, Ikeda S, Polym. Bull., 1, 849 (1979)
  •  
  • 22. Kashiwa N, Yoshidake J, Makromol. Chem. Rapid Commun., 4, 41 (1983)
  •  
  • 23. Kashiwa N, Yoshitake J, Polym. Bull., 11, 479 (1984)
  •  
  • 24. Chien JCW, Ilu Y, J. Polym. Sci. A: Polym. Chem., 25, 2881 (1987)
  •  
  • 25. Natta G, J. Polym. Sci., 34, 21 (1959)
  •  
  • 26. Grievson BM, Makromol. Chem., 84, 93 (1965)
  •  
  • 27. Boucher DG, Parsons IW, Haward RN, Makromol. Chem., 175, 3461 (1974)
  •  
  • 28. Doi Y, Morinaga A, Keii T, Makromol. Chem. Rapid Commun., 1, 193 (1980)
  •  
  • 29. Suzuki E, Tamura M, Doi Y, Keii T, Makromol. Chem., 180, 2235 (1979)
  •  
  • 30. Zucchini U, Saggese G, Cuffiani I, Foschini GTransition Metal Catalyzed Polymerizations, R.P. Quirk, ed., Cambridge Univ. Press, New York, p. 450 (1988)
  •  
  • 31. Busico V, Corradini P, DeMartino L, Proto A, Savono V, Albizzati E, Makromol. Chem., 186, 1279 (1985)
  •  
  • 32. Chien JCWTransition Metal Catalyzed Polymerizations, R.P. Quirk, Ed., Cambridge Univ. Press, New York, p. 55 (1988)
  •  
  • 33. Tait PJTTransition Metal Catalyzed Polymerizations, R.P. Quirk, Ed., MMI Press, New York, p. 115 (1983)
  •  
  • 34. Vandenberg EJU.S. Patent, 3,051,690 (1962)
  •  
  • 35. Ettore B, Luciano LItalian Patent (1957)
  •  
  • 36. Natta G, Chim. Ind., 41(6), 519 (1959)
  •  
  • 37. Bourat G, Ferrier J, Perez A, J. Polym. Sci. C: Polym. Lett., 4, 109 (1963)
  •  
  • 38. Okura I, Soga K, Kojima A, Keii T, J. Polym. Sci. A: Polym. Chem., 8, 2717 (1970)
  •  
  • 39. Soga K, Shiono T, Polym. Bull., 8, 261 (1982)
  •  
  • 40. Chien JCW, Kuo CI, J. Polym. Sci. A: Polym. Chem., 24, 2707 (1986)
  •  
  • 41. Chien JCW, Bres P, J. Polym. Sci. A: Polym. Chem., 24, 1967 (1986)
  •  
  • 42. Kim I, Kim JH, Woo SI, J. Appl. Polym. Sci., 39, 837 (1990)
  •  
  • 43. Kim I, Woo SI, Polym.(Korea), 15(6), 687 (1991)
  •  
  • 44. Keii TKinetics of Ziegler-Natta Polymerization, Kodansha, Tokyo (1972)
  •  
  • 45. Kissin YVIsospecific Polymerization of Olefins, Springer-Verlag, New York (1985)
  •  
  • 46. Natta G, Pasquon I, Svab J, Zambelli A, Chim. Ind., 44, 621 (1962)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1993; 17(6): 611-621

    Published online Nov 25, 1993